Skip to main content
Log in

Cytoskeletal regulation of nitric oxide synthase

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The three isoforms of nitric oxide synthase (NOS)—endothelial NOS (eNOS), inducible NOS (iNOS), and neural NOS (nNOS)—colocalize with the cytoskeleton including actin microfilaments, microtubules, and intermediate filaments directly or indirectly. These colocalizations enable optimal nitric oxide production and help NOS exert their functions. The reorganization of cytoskeletal polymerization state induced by extracellular stimuli such as shear stress, hypoxia, and drugs regulates eNOS, nNOS, and iNOS. Alterations of nitric oxide production caused by cytoskeletal reorganization play an important role in physiological and pathophysiological conditions. This review focuses on recent data regarding the regulation of NOS by the cytoskeleton at transcriptional, posttranscriptional, and posttranslational levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moncada, S. and Higgs A. (1993) The L-argininenitric oxide pathway. N. Engl. J. Med. 329, 2002–2012.

    Article  PubMed  CAS  Google Scholar 

  2. Michel, T. and Feron, O. (1997) Nitric oxide synthases: which, where, how, and why? J. Clin. Invest. 100, 2146–2152.

    PubMed  CAS  Google Scholar 

  3. dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A., and Nosworthy, N. J. (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473.

    PubMed  Google Scholar 

  4. Mounier, N. and Arrigo, A. P. (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7, 167–176.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, T. Y. and Gotlieb, A. I. (2003) Microfilaments and microtubules maintain endothelial integrity. Microsc. Res. Tech. 60, 115–127.

    Article  PubMed  CAS  Google Scholar 

  6. Dudek, S. M. and Garcia, J. G. (2001) Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91, 1487–1500.

    PubMed  CAS  Google Scholar 

  7. Wade, R. H., Meurer-Grob, P., Metoz, F., and Arnal, I. (1998) Organisation and structure of microtubules and microtubule-motor protein complexes. Eur. Biophys. J. 27, 446–454.

    Article  PubMed  CAS  Google Scholar 

  8. Kreis, T. E. (1990) Role of microtubules in the organisation of the Golgi apparatus. Cell Motil. Cytoskeleton 15, 67–70.

    Article  PubMed  CAS  Google Scholar 

  9. Helfand, B. T., Chang, L., and Goldman, R. D. (2003) The dynamic and motile properties of intermediate filaments. Annu. Rev. Cell Dev. Biol. 19, 445–467.

    Article  PubMed  CAS  Google Scholar 

  10. Davies, P. F. (1995) Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560.

    PubMed  CAS  Google Scholar 

  11. Cucina, A., Sterpetti, A. V., Pupelis, G., Fragale, A., Lepidi, S., Cavallaro, A., Giustiniani, Q., and Santoro, D. L. (1995) Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells. Eur. J. Vasc. Endovasc. Surg. 9, 86–92.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, D. W., Gotlieb, A. I., and Langille, B. L. (1989) In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis 9, 439–445.

    PubMed  CAS  Google Scholar 

  13. Lehoux, S. and Tedgui, A. (2003) Cellular mechanics and gene expression in blood vessels. J. Biomech. 36, 631–643.

    Article  PubMed  Google Scholar 

  14. Hutcheson, I. R. and Griffith, T. M. (1996) Mechanotransduction through the endothelial cytoskeleton: mediation of flow—but not agonist-induced EDRF release. Br. J. Pharmacol. 118, 720–726.

    PubMed  CAS  Google Scholar 

  15. Skidgel, R. A. (2002) Proliferation of regulatory mechanisms for eNOS: an emerging role for the cytoskeleton. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L1179-L1182.

    PubMed  CAS  Google Scholar 

  16. Henrion, D., Terzi, F., Matrougui, K., Duriez, M., Boulanger, C. M., Colucci-Guyon, E., Babinet, C., Briand, P., Friedlander, G., Poitevinet, P., and Levy, B. I. (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J. Clin. Invest. 100, 2909–2914.

    Article  PubMed  CAS  Google Scholar 

  17. Papapetropoulos, A., Rudic, R. D., and Sessa, W. C. (1999) Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc. Res. 43, 509–520.

    Article  PubMed  CAS  Google Scholar 

  18. Li, H., Wallerath, T., and Forstermann, U. (2002) Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide 7, 132–147.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshizumi, M., Perrella, M. A., Burnett, Jr. J. C., and Lee, M. E. (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ. Res. 73, 205–209.

    PubMed  CAS  Google Scholar 

  20. Searles, C. D., Miwa, Y., Harrison, D. G., and Ramasamy, S. (1999) Posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ. Res. 85, 588–595.

    PubMed  CAS  Google Scholar 

  21. Laufs, U., Endres, M., Stagliano, N., Amin-Hanjani, S., Chui, D. S., Yang, S. X., Simoncini, T., Yamada, M., Rabkin, E., Allen, P. G., Huang, P. L., Bohm, M., Schoen, F. J., Moskowitz, M. A., and Liao, J. K. (2000) Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J. Clin. Invest. 106, 15–24.

    PubMed  CAS  Google Scholar 

  22. Takemoto, M., Sun, J., Hiroki, J., Shimokawa, H., and Liao, J. K. (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106, 57–62.

    Article  PubMed  CAS  Google Scholar 

  23. Su, Y., Edwards-Bennett, S., Bubb, M. R., and Block, E. R. (2003) Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am. J. Physiol. Cell Physiol. 284, C1542-C1549.

    PubMed  CAS  Google Scholar 

  24. Nasmyth, K. and Jansen, R. P. (1997) The cytoskeleton in mRNA localization and cell differentiation. Curr. Opin. Cell. Biol. 9, 396–400.

    Article  PubMed  CAS  Google Scholar 

  25. Bassell, G. J. and Singer, R. H. (2001) Neuronal RNA localization and the cytoskeleton. Results Probl. Cell Differ. 34, 41–56.

    PubMed  CAS  Google Scholar 

  26. Bassell, G. and Singer, R. H. (1997) mRNA and cytoskeletal filaments. Curr. Opin. Cell. Biol. 9, 109–115.

    Article  PubMed  CAS  Google Scholar 

  27. Bloch, K. D. (1999) Regulation of endothelial NO synthase mRNA stability: RNA-binding proteins crowd on the 3′-untranslated region. Circ. Res. 85, 653–655.

    PubMed  CAS  Google Scholar 

  28. Lai, P. F., Mohamed, F., Monge, J. C., and Stewart, D. J. (2003) Downregulation of eNOS mRNA expression by TNFalpha: identification and functional characterization of RNA-protein interactions in the 3′UTR. Cardiovasc. Res. 59, 160–168.

    Article  PubMed  CAS  Google Scholar 

  29. Searles, C. D., Ide, L., Davis, M. E., and Harrison, D. G. (2002) Post-transcriptional regulation of endothelial nitric oxide synthase during cell growth: evidence for the role of actin. FASEB J. 16, A440.

    Google Scholar 

  30. Venema, V. J., Marrero, M. B., and Venema, R. C. (1996) Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton. Biochem. Biophys. Res. Commun. 226, 703–710.

    Article  PubMed  CAS  Google Scholar 

  31. Su, Y., Zharikov, S. I., and Block, E. R. (2002) Microtubule-active agents modify nitric oxide production in pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L1183-L1189.

    PubMed  CAS  Google Scholar 

  32. Lee, N. P. and Yan, C. C. (2003) Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′,5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 144, 3114–3129.

    Article  PubMed  CAS  Google Scholar 

  33. Kondrikov, D., Su, Y., Han, H.-R., and Block, E. R. (2004) Direct interaction of endothelial nitric oxide synthase with the actin cytoskeleton. FASEB J. 15, A1026.

    Google Scholar 

  34. Kanzaki, M. and Pessin, J. E. (2002) Caveolin-associated filamentous actin (Cav-actin) defines a novel F-actin structure in adipocytes. J. Biol. Chem. 277, 25867–25869.

    Article  PubMed  CAS  Google Scholar 

  35. Nishida, E., Koyasu, S., Sakai, H., and Yahara, I. (1986) Calmodulin-regulated binding of the 90-kDa heat shock protein to actin filaments. J. Biol. Chem. 261, 16033–16036.

    PubMed  CAS  Google Scholar 

  36. Koyasu, S., Nishida, E., Kadowaki, T., Matsuzaki, F., Iida, K., Harada, F., Kasuga, M., Sakai, H., and Yahara, I. (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc. Natl. Acad. Sci. U S A 83, 8054–8058.

    Article  PubMed  CAS  Google Scholar 

  37. Czar, M. J., Welsh, M. J., and Pratt, W. B. (1996) Immunofluorescence localization of the 90-kDa heat-shock protein to cytoskeleton. Eur. J. Cell Biol. 70, 322–330.

    PubMed  CAS  Google Scholar 

  38. Orth, J. D. and McNiven, M. A. (2003) Dynamin at the actin-membrane interface. Curr. Opin. Cell. Biol. 15, 31–39.

    Article  PubMed  CAS  Google Scholar 

  39. Zharikov, S. I. and Block, E. R. (2000) Association of L-arginine transporters with fodrin: implications for hypoxic inhibition of arginine uptake. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L111-L117.

    PubMed  CAS  Google Scholar 

  40. Zimmermann, K., Opitz, N., Dedio, J., Renne, C., Muller-Esterl, W., and Oess, S. (2002) NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U S A 99, 17167–17172.

    Article  PubMed  CAS  Google Scholar 

  41. McDonald, K. K., Zharikov, S., Block, E. R., and Kilberg, M. S. (1997) A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”. J. Biol. Chem. 272, 31213–31216.

    Article  PubMed  CAS  Google Scholar 

  42. Dedio, J., Konig, P., Wohlfart, P., Schroeder, C., Kummer, W., and Muller-Esterl, W. (2001) NOSIP, a novel modulator of endothelial nitric oxide synthase activity. FASEB J. 15, 79–89.

    Article  PubMed  CAS  Google Scholar 

  43. Whitney, J. A., German, Z., Sherman, T. S., Yuhanna, I. S., and Shaul, P. W. (2000) Cell growth modulates nitric oxide synthase expression in fetal pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L131-L138.

    PubMed  CAS  Google Scholar 

  44. Laufs, U., Endres, M., Custodis, F., Gertz, K., Nickenig, G., Liao, J. K., and Bohm M. (2000) Suppression of endothelial nitric oxide production after withdrawal of statin treatment is mediated by negative feedback regulation of rho GTPase gene transcription. Circulation 102, 3104–3110.

    PubMed  CAS  Google Scholar 

  45. Witteck, A., Yao, Y., Fechir, M., Forstermann, U., and Kleinert, H. (2003) Rho protein-mediated changes in the structure of the actin cytoskeleton regulate human inducible NO synthase gene expression. Exp. Cell Res. 287, 106–115.

    Article  PubMed  CAS  Google Scholar 

  46. Zeng, C. and Morrison, A. R. (2001) Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression. Am. J. Physiol. Cell Physiol. 281, C932-C940.

    PubMed  CAS  Google Scholar 

  47. Hattori, Y. and Kasai, K. (2004) Disruption of the actin cytoskeleton up-regulates iNOS expression in vascular smooth muscle cells. J. Cardiovasc. Pharmacol. 43, 209–213.

    Article  PubMed  CAS  Google Scholar 

  48. Marczin, N., Jilling, T., Papapetropoulos, A., Go, C., and Catravas, J. D. (1996) Cytoskeleton-dependent activation of the inducible nitric oxide synthase in cultured aortic smooth muscle cells. Br. J. Pharmacol. 118, 1085–1094.

    PubMed  CAS  Google Scholar 

  49. Sotiropoulos, A., Gineitis, D., Copeland, J., and Treisman, R. (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98, 159–169.

    Article  PubMed  CAS  Google Scholar 

  50. Marczin, N., Papapetropoulos, A., Jilling, T., and Catravas, J. D. (1993) Prevention of nitric oxide synthase induction in vascular smooth muscle cells by microtubule depolymerizing agents. Br. J. Pharmacol. 109, 603–605.

    PubMed  CAS  Google Scholar 

  51. Kirikae, T., Kirikae, F., Oghiso, Y., and Nakano, M. (1996) Microtubule-disrupting agents inhibit nitric oxide production in murine peritoneal macrophages stimulated with lipopolysaccharide or paclitaxel (Taxol). Infect. Immun. 64, 3379–3384.

    PubMed  CAS  Google Scholar 

  52. Vanhatalo, S., Lumme, A., and Soinila, S. (1998) Colchicine differentially induces the expressions of nitric oxide synthases in central and peripheral catecholaminergic neurons. Exp. Neurol. 150, 107–114.

    Article  PubMed  CAS  Google Scholar 

  53. Ory, S., Destaing, O., and Jurdic, P. (2002) Microtubule dynamics differentially regulates Rho and Rac activity and triggers Rho-independent stress fiber formation in macrophage polykaryons. Eur. J. Cell Biol. 81, 351–362.

    Article  PubMed  CAS  Google Scholar 

  54. Jung, H. I., Shin, I., Park, Y. M., Kang, K. W., and Ha, K. S. (1997) Colchicine activates actin polymerization by microtubule depolymerization. Mol. Cells 7, 431–437.

    PubMed  CAS  Google Scholar 

  55. Kajstura, J., Sowa, G., and Wronska, D. (1993) Induction of DNA synthesis by microtubule depolymerization is mediated by actin filaments. Cytobios 76, 67–74.

    PubMed  CAS  Google Scholar 

  56. Taylor, L. S., Cox, G. W., Melillo, G., Bosco, M. C., and Espinoza-Delgado, I. (1997) Bryostatin-1 and IFN-gamma synergize for the expression of the inducible nitric oxide synthase gene and for nitric oxide production in murine macrophages. Cancer Res. 57, 2468–2473.

    PubMed  CAS  Google Scholar 

  57. Weisz, A., Oguchi, S., Cicatiello, L., and Esumi, H. (1994) Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferongamma and bacterial lipopolysaccharide. Transcriptional and post-transcriptional regulation. J. Biol. Chem. 269, 8324–8333.

    PubMed  CAS  Google Scholar 

  58. Soderberg, M., Raffalli-Mathieu, F., and Lang, M. A. (2002) Inflammation modulates the interaction of heterogeneous nuclear ribonucleoprotein (hnRNP) I/polypyrimidine tract binding protein and hnRNP L with the 3′ untranslated region of the murine inducible nitric-oxide synthase mRNA. Mol. Pharmacol. 62, 423–431.

    Article  PubMed  CAS  Google Scholar 

  59. Rodriguez-Pascual, F., Hausding, M., Ihrig-Biedert, I., Furneaux, H., Levy, A. P., Forstermann, U., and Kleinert, H. (2000) Complex contribution of the 3′-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J. Biol. Chem. 275, 26040–26049.

    Article  PubMed  CAS  Google Scholar 

  60. Webb, J. L., Harvey, M. W., Holden, D. W., and Evans, T. J. (2001) Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect. Immun. 69, 6391–6400.

    Article  PubMed  CAS  Google Scholar 

  61. Daniliuc, S., Bitterman, H., Rahat, M. A., Kinarty, A., Rosenzweig, D., Lahat, N., and Nitza, L. (2003) Hypoxia inactivates inducible nitric oxide synthase in mouse macrophages by disrupting its interaction with alpha-actinin 4. J. Immunol. 171, 3225–3232.

    PubMed  CAS  Google Scholar 

  62. Yoshida, M. and Xia, Y. (2003) Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J. Biol. Chem. 278, 36953–36958.

    Article  PubMed  CAS  Google Scholar 

  63. Gorodeski, G. I. (2000) NO increases permeability of cultured human cervical epithelia by cGMP-mediated increase in G-actin. Am. J. Physiol. Cell Physiol. 278, C942-C952.

    PubMed  CAS  Google Scholar 

  64. Zhang, J. S., Kraus, W. E., and Truskey, G. A. (2004) Stretch-induced nitric oxide modulates mechanical properties of skeletal muscle cells. Am. J. Physiol. Cell Physiol. 287, C292-C299.

    Article  PubMed  CAS  Google Scholar 

  65. Tidball, J. G., Lavergne, E., Lau, K. S., Spencer, M. J., Stull, J. T. and Wehling, M. (1998) Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. Am. J. Physiol. 275, C260-C266.

    PubMed  CAS  Google Scholar 

  66. Saur, D., Neuhuber, W. L., Gengenbach, B., Huber, A., Schusdziarra, V., and Allescher, H. D. (2002) Site-specific gene expression of nNOS variants in distinct functional regions of rat gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G349-G358.

    PubMed  CAS  Google Scholar 

  67. Boissel, J. P., Zelenka, M., Godtel-Armbrust, U., Feuerstein, T. J., and Ulrich, F. (2003) Transcription of different exons 1 of the human neuronal nitric oxide synthase gene is dynamically regulated in a cell- and stimulus-specific manner. Biol. Chem. 384, 351–362.

    Article  PubMed  CAS  Google Scholar 

  68. Ort, T., Maksimova, E., Dirkx, R., Kachinsky, A. M., Berghs, S., Froehner, S. C., and Solimena, M. (2000) The receptor tyrosine phosphatase-like protein ICA512 binds the PDZ domains of beta2-syntrophin and nNOS in pancreatic beta-cells. Eur. J. Cell Biol. 79, 621–630.

    Article  PubMed  CAS  Google Scholar 

  69. Brenman, J. E., Chao, D. S., Gee, S. H., McGee, A. W., Craven, S. E., Santillano, D. R., Wu, Z., Huang, F., Xia, H., Peters, M. F., Froehner, S. C., and Bredt, D. S. (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84, 757–767.

    Article  PubMed  CAS  Google Scholar 

  70. Hillier, B. J., Christopherson, K. S., Prehoda, K. E., Bredt, D. S., and Lim, W. A. (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284, 812–815.

    Article  PubMed  CAS  Google Scholar 

  71. Peters, M. F., Adams, M. E. and Froehner S. C. (1997) Differential association of syntrophin pairs with the dystrophin complex. J. Cell. Biol. 138, 81–93.

    Article  PubMed  CAS  Google Scholar 

  72. Marechal, G., and Gailly, P. (1999) Effects of nitric oxide on the contraction of skeletal muscle. Cell Mol. Life Sci. 55, 1088–1102.

    Article  PubMed  CAS  Google Scholar 

  73. Reid, M. B. (1998) Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol. Scand. 162, 401–409.

    Article  PubMed  CAS  Google Scholar 

  74. Koh, T. J. and Tidball, J. G. (2000) Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells. Am. J. Physiol. Cell Physiol. 279, C806-C812.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchao Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Kondrikov, D. & Block, E.R. Cytoskeletal regulation of nitric oxide synthase. Cell Biochem Biophys 43, 439–449 (2005). https://doi.org/10.1385/CBB:43:3:439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:3:439

Index Entries

Navigation