Cell Biochemistry and Biophysics

, Volume 43, Issue 3, pp 431–437 | Cite as

Light-induced protein-matrix uncoupling and protein relaxation in dry samples of trehalose-coated MbCO at room temperature

  • Stefania Abbruzzetti
  • Sergio Giuffrida
  • Silvia Sottini
  • Cristiano Viappiani
  • Lorenzo Cordone
Original Article

Abstract

In humid samples of trehalose-coated carboxy-myoglobin (MbCO), thermally driven conformational relaxation takes place after photodissociation of the carbon monoxide (CO) molecule at room temperature. In such samples, because of the extreme viscosity of the external matrix, photodissociated CO cannot diffuse out of the protein and explores the whole (proximal and distal side) heme pocket, experiencing averaged protein heme pocket structures, as a results of the presence of Brownian motions. At variance, in very dry samples, a lower portion of the photodissociated CO diffuses from the distal to the proximal heme pocket side probing in nonaveraged structures. We revisit here the flash photolysis data by Librizzi et al. (2002) and report on new, room temperature experiments in MbCO-trehalose samples, shortly illuminated prior the laser pulse. In dry samples, pre-illumination increased the diffusion of CO from the distal to the proximal heme pocket side, which resulted in less structure than in non-pre-illuminated samples. Such an effect, which is absent in humid samples, stems from a decoupling of the protein internal degrees of freedom from those of the external water-sugar matrix. We suggest that such a decoupling can be brought about by the continuous attempts performed by the protein during pre-illumination to undergo relaxation toward the photodissociated deoxy state. This, in turn, causes a collapse in the hydrogen bond network, which connects the protein surface to the water-sugar matrix, as reported by Cottone et al. (2002) and Giuffrida et al. (2003). In the conclusion section, we discuss the possible involvement of the processes invoked to rationalize the present data, in the function of macromolecules and interactions in living cells.

Index Entries

Trehalose flash-photolysis light-induced relaxation myoglobin hydrogen bonds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Francia, F., Palazzo, G., Mallardi, A., Cordone, L., and Venturoli, G. (2004) Probing light-induced conformational transitions in bacterial photosynthetic reaction centers embedded in trehalose-water amorphous matrices. Biochim. Biophys. Acta-Bioenerg. 1658, 50–57.CrossRefGoogle Scholar
  2. 2.
    Giuffrida, S., Cottone, G., Librizzi, F., and Cordone, L. (2003) Coupling between the thermal evolution of the heme pocket and the external matrix structure in trehalose coated carboxymyoglobin. J. Phys. Chem. B. 107, 13,211–13,217.CrossRefGoogle Scholar
  3. 3.
    Cottone, G., Ciccotti, G., and Cordone, L. (2002) Protein-trehalose-water structures in trehalose coated carboxy-myoglobin. J. Chem. Phys. 117, 9862–9866.CrossRefGoogle Scholar
  4. 4.
    Crowe, J. H., Crowe, L. M., and Chapman, D. (1984) Preservation of membranes in anhydrobiotic organisms. Science 223, 701–703.PubMedCrossRefGoogle Scholar
  5. 5.
    Bianchi, G., Gamba, A., Murelli, C., Salamini, F., and Bartels, D. (1991) Novel carbohydrate-metabolism in the resurrection plant craterostigma plantagineum. Plant. J. 1, 355–359.Google Scholar
  6. 6.
    Crowe, L. M. and Crowe, J. H. (1995) Freeze-dried liposomes, in Liposomes, New Systems and New Trends in Their Application (F. Puisieux, P. Couvreur, J. Delattre and J. P. Devissaguet, eds.), Editions de Santé, Paris, pp. 237–272.Google Scholar
  7. 7.
    Crowe, J. H., Crowe, L. M., and Jackson, S. A. (1982) Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch. Bioch. Biophys. 220, 615–617.Google Scholar
  8. 8.
    Crowe, L. M. (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp. Biochem. Physiol. 131, 505–513.CrossRefGoogle Scholar
  9. 9.
    Librizzi, F., Viappiani, C., Abbruzzetti, S., and Cordone, L. (2002) Residual water modulates the dynamics of the protein and of the external matrix in “trehalose coated” MbCO: An infrared and flash-photolysis study. J. Chem. Phys. 116, 1193–1200.CrossRefGoogle Scholar
  10. 10.
    Cordone, L., Galajda, P., Vitrano, E., Gassmann, A., Ostermann, A., and Parak, F. (1998) A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur. Biophys. J. 27, 173–176.PubMedCrossRefGoogle Scholar
  11. 11.
    Cordone, L., Ferrand, M., Vitrano, E., and Zaccai, G. (1999) Harmonic behavior of trehalose-coated carbon-monoxymyoglobin at high temperture. Biophys. J. 76, 1043–1047.PubMedGoogle Scholar
  12. 12.
    Rector, K. D., Jiang, J., Berg, M. A., and Fayer, M. D. (2001) Effects of solvent viscosity on protein dynamics: Infrared vibrational echo experiments and theory. J. Phys. Chem. B. 105, 1081–1092.CrossRefGoogle Scholar
  13. 13.
    Palazzo, G., Mallardi, A., Hochkoeppler, A., Cordone, L., and Venturoli, G. (2002) Electron transfer kinetics in photosynthetic reaction centers embedded in trehalose glasses: trapping of conformational substates at room temperature. Biophys. J. 82, 558–568.PubMedGoogle Scholar
  14. 14.
    Francia, F., Palazzo, G., Mallardi, A., Cordone, L., and Venturoli, G. (2003) Residual water modulates Q(A)(−)-to-Q(B) electron transfer in bacterial reaction centers embedded in trehalose amorphous matrices. Biophys. J. 85, 2760–2775.PubMedGoogle Scholar
  15. 15.
    Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H., and Gunsalus, I. C. (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373.PubMedCrossRefGoogle Scholar
  16. 16.
    Ostermann, A., Washipsky, R., Parak, F., and Nienhaus, G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.PubMedCrossRefGoogle Scholar
  17. 17.
    Schlichting, I., Beredzen, J., Phillips, G. N., and Sweet, R. M. (1994) Crystal structure of photolysed carbonmonoxymyoglobin. Nature 371, 808–812.PubMedCrossRefGoogle Scholar
  18. 18.
    Hartmann, H., Zinser, S., Komninos, P., Schneider, R. T., Nienhaus, G. U., and Parak, F. (1996) X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc. Natl. Acad. Sci. USA 93, 7013–7016.PubMedCrossRefGoogle Scholar
  19. 19.
    Banderini, A., Sottini, S., and Viappiani, C. (2004) Method for acquiring extended real-time kinetic signals in nanosecond laser flash photolysis experiments. Rev. Sci. Instrum. 75, 2257–2261.CrossRefGoogle Scholar
  20. 20.
    Steinbach, P. J. (2002) Interring lifetime distributions from kinetics by maximizing entropy using a bootstrapped model. J. Chem. Inf. Comput. Sci. 42, 1476–1478.PubMedCrossRefGoogle Scholar
  21. 21.
    Steinbach, P. J., Ionescu, R., and Matthews, C. R. (2002) Analysis of kinetics using a hybrid maximumentropy/nonlinear-least-squares method: application to protein folding. Biophys. J. 82, 2244–2255.PubMedGoogle Scholar
  22. 22.
    Giuffrida, S., Cottone, G., and Cordone, L. (2004) Structure-dynamics coupling between protein and external matrix in sucrose-coated and in trehalose-coated MbCO: an FTIR study. J. Phys. Chem. B. 108, 15,415–15,421.CrossRefGoogle Scholar
  23. 23.
    Ansari, A., Berendzen, J., Braunstein, D., et al. (1987) Rebinding and relaxation in the myoglobin pocket. Biophys. Chem. 26, 337–355.PubMedCrossRefGoogle Scholar
  24. 24.
    Ahmed, A. M., Campbell, B. F., Caruso, D., et al. (1991) Evidence for proximal control of lignad specificity in hemeproteins—absorption and raman studies of cryogenically trapped photoproducts of ligand bound myoglobins. Chem. Phys. 158, 329–351.CrossRefGoogle Scholar
  25. 25.
    Srajer, V., Reinisch, L., and Champion, P. M. (1991) Investigation of laser-induced long-lived states of photolyzed MbCO. Biochemistry 30, 4886–4895.PubMedCrossRefGoogle Scholar
  26. 26.
    Chu, K., Ernst, R. M., Frauenfelder, H., Mourant, J. R., Nienhaus, G. U., and Philipp, R. (1995) Light-induced and thermal relaxation in a protein. Phys. Rev. Lett. 74, 2607–2610.PubMedCrossRefGoogle Scholar
  27. 27.
    Agmon, N. and Hopfield, J. (1983) Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: intramolecular processes with slow conformational changes. J. Chem. Phys. 79, 6947–6959.CrossRefGoogle Scholar
  28. 28.
    Bizzarri, A. R. and Cannistraro, S. (2002) Molecular Dynamics of water at the protein-solvent interface. J. Phys. Chem. B. 106, 6617–6633.CrossRefGoogle Scholar
  29. 29.
    Careri, G. (1999) Protein-solvent interactions and biological functions. Models from statistical physics, in Biological Physics (Frauenfelder, H., Hummer, G., and Garcia, R., eds.), AIP American Institute of Physics, Melville, NY, pp. 8–13.Google Scholar
  30. 30.
    Doster, W., Bacheitner, A., Dunau, R., Hiebl, M., and Luscher, E. (1986) Thermal properties of water in myoglobin crystals and solutions at subzero temperature. Biophys. J. 50, 213–219.PubMedGoogle Scholar
  31. 31.
    Green, J. L., Fan, J., and Angell, C. A. (1994) The protein-glass analogy: new insight from homopeptide comparisons. J. Phys. Chem. 98, 13,780–13,790.CrossRefGoogle Scholar
  32. 32.
    Goldanskii, V. L. and Krupyanskii, Y. F. (1989) Protein and protein-bound water dynamics studied by rayleight scattering of mössbauer radiation (RSMR). Q. Rev. Biophys. 22, 39–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Barron, L. D., Hecht, L., and Wilson, G. (1997) The lubricant of life: a proposal that solvent water promotes extremely fast conformational fluctuations in mobile heteropolypeptide structure. Biochemistry 36, 13,143–13,147.CrossRefGoogle Scholar
  34. 34.
    Fenimore, P. W., Frauenfelder, H., McMahon, B. H., and Parak, F. (2002) Bulk solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuation in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA 99, 16,047–16,051.CrossRefGoogle Scholar
  35. 35.
    Isobe, S., Ishida, N., Koizumi, M., Kano, H., and Hazlewood, C. F. (1999) Effect of electric field on physical states of cell-associated water in germinating morning glory seeds observed by 1H-NMR. Biochim. Biophys. Acta Gen. Subj. 1426, 17–31.CrossRefGoogle Scholar
  36. 36.
    Soper, A. K. (2000) Probing the structure of water around biological molecules: concepts, constructs and consequences. Physica B 276–278, 12–16.CrossRefGoogle Scholar
  37. 37.
    Chaplin, M. F. (2001) Water: its importance to life. Biochem. Mol. Biol. Ed. 29, 54–59.CrossRefGoogle Scholar
  38. 38.
    Albrecht-Buehler, G. (2002) Water structuring centers of mammalian cell surfaces. Exp. Cell Res. 279, 167–176.PubMedCrossRefGoogle Scholar
  39. 39.
    Pollack, G. H. (2003) The role of aqueous interfaces in the cell. Adv. Colloid Interface Sci. 103, 173–196.PubMedCrossRefGoogle Scholar
  40. 40.
    Ford, R. C., Ruffle, S. V., Ramirez-Cuesta, A. J., et al. (2004) Inelastic incoherent neutron scattering measurements of intact cells and tissues and detection of interfacial water. J. Am. Chem. Soc. 126, 4682–4688.PubMedCrossRefGoogle Scholar
  41. 41.
    Simonsen, A. C., Hansen, P. L., and Klösgen, B. (2004) Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J. Colloid Interface Sci. 273, 291–299.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Stefania Abbruzzetti
    • 1
    • 2
  • Sergio Giuffrida
    • 1
    • 3
  • Silvia Sottini
    • 1
    • 2
  • Cristiano Viappiani
    • 1
    • 2
  • Lorenzo Cordone
    • 1
    • 3
  1. 1.Istituto Nazionale di Fisica della MateriaUniversitá di ParmaParmaItaly
  2. 2.Dipartimento di FisicaUniversitá di ParmaParmaItaly
  3. 3.Dip. di Scienze Fisiche ed AstronomicheUniversitá di PalermoPalermoItaly

Personalised recommendations