Skip to main content
Log in

Long QT syndrome-associated I593R mutation in HERG potassium channel activates ER stress pathways

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Hereditary long QT syndrome is a fatal arrhythmia associated with gene mutations in potassium and sodium channels that are expressed in ventricle. By employing heterologous expression and making comparisons to cells expressing wild-type human-ether-a-go-go-related protein (HERG), a potassium channel that contributes to I Kr current in ventricular cardiomyocytes, we demonstrate activation of an elevated endoplasmic reticulum (ER) stress response by the mutant I593R HERG potassium channel implicated in long QT syndrome type 2. I593R HERG is trafficking-impaired and forms Triton-insoluble aggregates. Expression of I593R HERG activates the unfolded protein response pathway and, separately, NF-κB signaling, ATF6, the activating transcription factor of the unfolded protein response pathway, is processed into the active transcription factor in the cells expressing I593R HERG. Consistent with ATF6 activation, the ER chaperones/calcium-binding proteins Grp78, Grp94, and calreticulin are elevated in I593R HERG-expressing cells. Coexpression of I593R HERG with wild-type HERG also results in ER stress pathway activation. By eliciting downstream links in signal transduction pathways associated with ER stress, expression of mutant trafficking impaired ion channels may contribute to disease etiology mechanisms that augment those associated with attenuated ion flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Valen, G., Yan, Z. Q., and Hansson, G. K. (2001) Nuclear factor kappa-B and the heart. J. Am. Coll. Cardiol. 38, 307–14.

    Article  PubMed  CAS  Google Scholar 

  2. Ma, Y. and Hendershot, L. M. (2002) The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones 7, 222–229.

    Article  PubMed  CAS  Google Scholar 

  3. Kouroku, Y., Fujita, E., Jimbo, A., et al. (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet. 11, 1505–1515.

    Article  PubMed  CAS  Google Scholar 

  4. Hampton, R. Y. (2003) IRE1: a role in upregulation of ER degradation. Dev. Cell 4, 144–146.

    Article  PubMed  CAS  Google Scholar 

  5. Paschen, W. (2003) Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain. Cell Calcium 34, 365–383.

    Article  PubMed  CAS  Google Scholar 

  6. Kaneko, M. and Nomura, Y. (2003) ER signaling in unfolded protein response. Life Sci. 74, 199–205.

    Article  PubMed  CAS  Google Scholar 

  7. Yoshida, H., Okada, T., Haze, K., et al. (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755–6767.

    Article  PubMed  CAS  Google Scholar 

  8. Pahl, H. L. and Baeuerle, P. A. (1997) The ER-overload response: activation of NF-kappa B. Trends Biochem. Sci. 22, 63–67.

    Article  PubMed  CAS  Google Scholar 

  9. Caspersen, C., Pedersen, P. S., and Treiman, M. (2000) The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J. Biol. Chem. 275, 22363–22372.

    Article  PubMed  CAS  Google Scholar 

  10. Benson, D. W., MacRae, C. A., Vesely, M. R., et al. (1996) Missense mutation in the pore region of HERG causes familial long QT syndrome. Circulation 93, 1791–1795.

    PubMed  CAS  Google Scholar 

  11. Zhou, Z., Gong, Q., Epstein, M. L., and January, C. T. (1998) HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects. J. Biol. Chem. 273, 21061–21066.

    Article  PubMed  CAS  Google Scholar 

  12. Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307.

    Article  PubMed  CAS  Google Scholar 

  13. Sanguinetti, M. C. (1999) Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann. NY Acad. Sci. 868, 406–413.

    Article  PubMed  CAS  Google Scholar 

  14. Tseng, G. N. (2001) I(Kr): the hERG channel. J. Mol. Cell. Cardiol. 33, 835–849.

    Article  PubMed  CAS  Google Scholar 

  15. McDonald, T. V., Yu, Z., Ming, Z., et al. (1997) A minK-HERG complex regulates the cardiac potassium current I(Kr). Nature 388, 289–292.

    Article  PubMed  CAS  Google Scholar 

  16. Merlini, G., Bellotti, V., Andreola, et al. (2001) Protein aggregation. Clin. Chem. Lab. Med. 39, 1065–1075.

    Article  PubMed  CAS  Google Scholar 

  17. Kaufman, R. J. (2002) Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110, 1389–1398.

    Article  PubMed  CAS  Google Scholar 

  18. Temussi, P. A., Masino, L., and Pastore, A. (2003) From Alzheimer to Huntington: why is a structural understanding so difficult? EMBO J. 22, 355–361.

    Article  PubMed  CAS  Google Scholar 

  19. Forman, M. S., Lee, V. M., and Trojanowski, J. Q. (2003) “Unfolding” pathways in neurodegenerative disease. Trends Neurosci. 26, 407–410.

    Article  PubMed  CAS  Google Scholar 

  20. Kudo, T., Katayama, T., Imaizumi, K., et al. (2002) The unfolded protein response is involved in the pathology of Alzheimer’s disease. Ann. NY Acad. Sci. 977, 349–355.

    Article  PubMed  CAS  Google Scholar 

  21. Oyadomari, S., Araki, E., and Mori, M. (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7, 335–345.

    Article  PubMed  CAS  Google Scholar 

  22. Araki, E., Oyadomari, S., and Mori, M. (2003) [Diabetes mellitus and endoplasmic reticulum stress]. Seikagaku 75, 1324–1331.

    PubMed  CAS  Google Scholar 

  23. Mohler, P. J., Schott, J. J., Gramolini, A. O., et al. (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639.

    Article  PubMed  CAS  Google Scholar 

  24. Marks, A. R. (2003) Arrhythmias of the heart: beyond ion channels. Nat. Med. 9, 263–264.

    Article  PubMed  CAS  Google Scholar 

  25. Tjoelker, L.W., Seyfried, C. E., Eddy, R.L., Jr., et al. (1994) Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry 33, 3229–3236.

    Article  PubMed  CAS  Google Scholar 

  26. Kagan, A., Yu, Z., Fishman, G. I., and McDonald, T. V. (2000) The dominant negative LQT2 mutation A561V reduces wild-type HERG expression. J. Biol. Chem. 275, 11241–11248.

    Article  PubMed  CAS  Google Scholar 

  27. Sanguinetti, M. C., Curran, M. E., Spector, P. S., and Keating, M. T. (1996) Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 93, 2208–2212.

    Article  PubMed  CAS  Google Scholar 

  28. Nakajima, T., Furukawa, T., Tanaka, T., et al. (1998) Novel mechanism of HERG current suppression in LQT2: shift in voltage dependence of HERG inactivation. Circ. Res. 83, 415–422.

    PubMed  CAS  Google Scholar 

  29. Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799.

    PubMed  CAS  Google Scholar 

  30. Steiner, H., Winkler, E., Shearman, M. S., Prywes, R., and Haass, C. (2001) Endoproteolysis of the ER stress transducer ATF6 in the presence of functionally inactive presenilins. Neurobiol. Dis. 8, 717–722.

    Article  PubMed  CAS  Google Scholar 

  31. Harding, H. P., Calfon, M., Urano, F., Novoa, I., and Ron, D. (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu. Rev. Cell. Dev. Biol. 18, 575–599.

    Article  PubMed  CAS  Google Scholar 

  32. Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111.

    Article  PubMed  CAS  Google Scholar 

  33. Pahl, H. L. and Baeuerle, P. A. (1996) Activation of NF-kappa B by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett. 392, 129–136.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, T., Zhang, X., and Li, J. J. (2002) The role of NF-kappaB in the regulation of cell stress responses. Int. Immunopharmacol. 2, 1509–1520.

    Article  PubMed  CAS  Google Scholar 

  35. Ficker, E., Dennis, A. T., Obejero-Paz, C. A., Castaldo, P., Taglialatela, M., and Brown, A. M. (2000) Retention in the endoplasmic reticulum as a mechanism of dominant-negative current suppression in human long QT syndrome. J. Mol. Cell. Cardiol. 32, 2327–2337.

    Article  PubMed  CAS  Google Scholar 

  36. Ng, D. T., Spear, E. D., and Walter, P. (2000) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell. Biol. 150, 77–88.

    Article  PubMed  CAS  Google Scholar 

  37. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C., and Sommer, T. (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell. Biol. 2, 379–384.

    Article  PubMed  CAS  Google Scholar 

  38. Thuerauf, D. J., Hoover, H., Meller, J., et al. (2001) Sarco/endoplasmic reticulum calcium ATPase-2 expression is regulated by ATF6 during the endoplasmic reticulum stress response: intracellular signaling of calcium stress in a cardiac myocyte model system. J. Biol. Chem. 276, 48309–48317.

    PubMed  CAS  Google Scholar 

  39. Hung, J. H., Su, I. J., Lei, H. Y., et al. (2004) Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J. Biol. Chem. 279, 46384–46392.

    Article  PubMed  CAS  Google Scholar 

  40. Molkentin, J. D. (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 63, 467–475.

    Article  PubMed  CAS  Google Scholar 

  41. Pond, A. L., Scheve, B. K., Benedict, A. T., et al. (2000) Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. J. Biol Chem 275, 5997–6006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, S.H., Platoshyn, O. & Yuan, J.X.J. Long QT syndrome-associated I593R mutation in HERG potassium channel activates ER stress pathways. Cell Biochem Biophys 43, 365–377 (2005). https://doi.org/10.1385/CBB:43:3:365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:3:365

Index entries

Navigation