Cell Biochemistry and Biophysics

, Volume 41, Issue 2, pp 233–258 | Cite as

Ion channels and transporters involved in cell volume regulation and sensor mechanisms

  • Yasunobu Okada
Review Article


All animal cell types have an appropriate volume. Even under physiological conditions of constant extracellular osmolarity, cells must regulate their volume. Cell volume is subjected to alterations because of persistent physicochemical osmotic load resulting from Donnan-type colloid osmotic pressure and of cell activity-associated changes in intracellular osmolarity resulting from osmolyte transport and metabolism. The strategy adopted by animal cells for coping with volume regulation on osmotic perturbation is to activate transport pathways, including channels and transporters, mainly for inorganic osmolytes to drive water flow. Under normotonic conditions, cells undergo volume regulation by pump-mediated mechanisms. Under anisotonic conditions, volume regulation occurs by additional channel/transporter-mediated mechanisms. Cell volume regulation is also attained through adjustment of intracellular levels not only of inorganic but also of organic osmolytes with changing the expression of their transporters or regulation of metabolism. In cell volume regulation mechanism, several “volume sensors” are thought to be involved. A volume-sensitive Cl channel has lately attracted considerable attention in this regard.

Index Entries

Cell volume regulation Boyle-van't Hoff law Gibbs-Donnan equilibrium pump-leak balance mechanism double Donnan mechanism channel transporter regulatory volume increase regulatory volume decrease volume sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macknight, A. D. C. and Leaf, A. (1977) Regulation of cellular volume. Physiol. Rev. 57, 510–573.PubMedGoogle Scholar
  2. 2.
    Hoffmann, E. K. and Simonsen, L. O. (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69, 315–382.PubMedGoogle Scholar
  3. 3.
    Lang, F., Busch, G. L., Ritter, M., Völkl, H., Waldegger, S., Gulbins, E., et al. (1998) Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306.PubMedGoogle Scholar
  4. 4.
    Hoffmann, E. K. and Mills, J. W. (1999) Membrane events involved in volume regulation. Curr. Top. Membt. 48, 123–196.Google Scholar
  5. 5.
    Lang, F. (ed.) (1998) Cell Volume Regulation, Karger, Basel.Google Scholar
  6. 6.
    Okada, Y. ed. (1998) Cell Volume Regulation, The Molecular Mechanism, and Volume Sensing Machinery, Elsevier, Amsterdam.Google Scholar
  7. 7.
    O'Neill, W. C. (1999) Physiological significance of volume-regulatory transporters. Am. J. Physiol. 276, C995-C1011.PubMedGoogle Scholar
  8. 8.
    Wehner, F., Olsen, H., Tinel, H., Kinne-Saffran, E., and Kinne, R. K. H. (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev. Physiol. Biochem. Pharmacol. 148, 1–80.PubMedGoogle Scholar
  9. 9.
    Baumgarten, C. M., and Feher, J. J. (1998) Osmosis and the regulation of cell volume, in Cell Physiology Source Book, 2nd ed. (Sperelakis, N., ed.), San Diego, Academic Press, pp. 253–292.Google Scholar
  10. 10.
    Okada, Y. (1997) Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273, C755-C789.PubMedGoogle Scholar
  11. 11.
    Fettiplace, R. and Haydon, D. A. (1980) Water permeability of lipid membranes. Physiol. Rev. 60, 510–550.PubMedGoogle Scholar
  12. 12.
    Diamond, J. M. (1978) Solute-linked water transport in epithelia, in Membrane Transport ProcessesV Vol. 1 (Hoffman, J. F., ed.), Raven Press, New York, pp. 257–292.Google Scholar
  13. 13.
    Zeuthen, T. (1996) Molecular Mechanisms of Water Transport, Springer, New York.Google Scholar
  14. 14.
    Agre, P., Preston, G. M., Smith, B. L., Jung, J.-S., Raina, S., Moon, C., et al. (1993) Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265, F463-F476.PubMedGoogle Scholar
  15. 15.
    Verkman, A. S., van Hoek, A. N., Ma, T., Frigeri, A., Skach, W. R., Mitra, A., et al. (1996) Water transport across mammalian cell membranes. Am. J. Physiol. 270, C12-C30.PubMedGoogle Scholar
  16. 16.
    Yang, B., and Verkman, A. S. (1997) Water and glycerol permeability of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem. 272, 16140–16146.PubMedGoogle Scholar
  17. 17.
    Maffly, R. H. and Leaf, A. (1959) The potential of water in mammalian tissues J. Gen. Physiol. 42, 1257–1275.PubMedGoogle Scholar
  18. 18.
    Lucké, B., and McCutcheon, M. (1932) The living cell as an osmotic system and its permeability to water. Physiol. Rev. 12, 68–139.Google Scholar
  19. 19.
    Drewnowska, K. and Baumgarten, C. M. (1991) Regulation of cellular volume in rabbit ventricular myocytes: bumetanide, chlorothiazide, and ouabain. Am. J. Physiol. 260, C122-C131.PubMedGoogle Scholar
  20. 20.
    Morishima, S., Shimizu, T., Kida, H., and Okada, Y. (2000) Volume expansion sensitivity of swelling-activated Cl channel in human epithelial cells. Jpn. J. Physiol. 50, 277–280.PubMedGoogle Scholar
  21. 21.
    Hazama, A. and Okada, Y. (1988) Ca2+ sensitivity of volume-regulatory K+ and Cl channels in cultured human epithelial cells. J. Physiol. (Lond.) 402, 687–702.Google Scholar
  22. 22.
    Leaf, A. (1956) On the mechanism of fluid exchange of tissues in vitro. Biochemistry 62, 241–248.Google Scholar
  23. 23.
    Tosteson, D. C. and Hoffman, J. F. (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44, 169–194.PubMedGoogle Scholar
  24. 24.
    Parker J. C., Gitelman, H. J., Glosson, P. S., and Leonard, D. L. (1975) Role of calcium in volume regulation by dog red blood cells. J. Gen. Physiol. 65, 84–96.PubMedGoogle Scholar
  25. 25.
    Milanick, M. A. and Hoffman, J. F. (1986) Ion transport and volume regulation in red blood cells. Ann. N. Y. Acad. Sci. 488, 174–186.PubMedGoogle Scholar
  26. 26.
    Grinstein, S. and Foskett, J. K. (1990) Ionic mechanisms of cell volume regulation in leukocytes. Annu. Rev. Physiol. 52, 399–414.PubMedGoogle Scholar
  27. 27.
    Sarkadi, B., and Parker, J. C. (1991) Activation of ion transport pathways in volume regulatory response of human lymphocytes to hyposmotic media. Am. J. Physiol. 248, C480-C487.Google Scholar
  28. 28.
    Miley, H. E., Holden, D., Grint, R., Best, L., and Brown, P. D. (1998) Regulatory volume increase in rat pancreatic β-cells. Pflügers Arch. 435, 227–230.PubMedGoogle Scholar
  29. 29.
    Pedersen, S. F., Kramhøft, B., Jørgensen, N. K. and Hoffmann E. K. (1996) Shrinkage-induced activation of the Na+/H+ exchanger in Ehrlich ascites tumor cells: mechanisms involved in the activation and a role for the exchanger in cell volume regulation. J. Membr. Biol. 149, 141–159.PubMedGoogle Scholar
  30. 30.
    Wehner, F. (1998) Cell volume-regulated cation channels. In Cell Volume Regulation (Lang, F. (ed.), Karger, Basel, pp. 8–20.Google Scholar
  31. 31.
    Wehner, F. and Tinel, H. (1998) Role of Na+ conductance, Na+−H+ exchange, and Na+−K+−2Cl symport in the regulatory volume increase of rat hepatocytes. J. Physiol. (Lond.) 506, 127–142.Google Scholar
  32. 32.
    Haas, M. (1994) The Na−K−Cl cotransporters. Am. J. Physiol. 267, C869-C885.PubMedGoogle Scholar
  33. 33.
    Hoffmann, E. K. and Dunham, P. B. (1995) Membrane mechanisms and intracellular signalling in cell volume regulation. Intern. Rev. Cytol. 161, 173–262.Google Scholar
  34. 34.
    Su, G., Kintner, D. B., Flagella, M., Shull, G. E., and Sun, D. (2002) Astrocytes from Na+−K+−Cl cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am. J. Physiol. 282, C1147-C1160.Google Scholar
  35. 35.
    Lytle, C. (1997) Activation of the avian erythrocyte Na−K−Cl cotransport protein by shrinkage, cAMP, fluoride and calyculin-A involves phosphorylation at common sites. J. Biol. Chem. 272, 15069–15077.PubMedGoogle Scholar
  36. 36.
    Xu, J.-C., Lytle, C., Zhu, T. T., Payne, J. A., Benz, E., Jr., and Forbush, B. (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na−K−Cl cotransporter. Proc. Natl. Acad. Sci. U. S. A. 91, 2201–2205.PubMedGoogle Scholar
  37. 37.
    Jensen, B. S., Jessen, F., and Hoffmann, E. K. (1993) Na+, K+, Cl cotransport and its regulation in Ehrlich ascites tumor cells. Ca2+/calmodulin and protein kinase C dependent pathways. J. Membr. Biol. 131, 161–178.PubMedGoogle Scholar
  38. 38.
    Klein, J. D., Lamitina, S. T., and O'Neill, W. C. (1999) JNK is a volume-sensitive kinase that phosphorylates the Na−K−2Cl cotransporter in vitro. Am. J. Physiol. 277, C425-C431.PubMedGoogle Scholar
  39. 39.
    Haas, M. and Forbush, B., 3rd. (2000) The Na−K−Cl cotransporter of secretory epithelia. Annu. Rev. Physiol. 62, 515–534.PubMedGoogle Scholar
  40. 40.
    Klein, J. D. and O'Neill, W. C. (1995) Volumesensitive myosin phosphorylation in vascular endothelial cells: correlation with Na−K−2Cl cotransport. Am. J. Physiol. 269, C1524-C1531.PubMedGoogle Scholar
  41. 41.
    Krarup, T., Jakobsen, L. D., Jensen, B. S., and Hoffmann, E. K. (1998) Na+−K+−2Cl cotransport in Ehrlich cells: regulation by protein phosphatases and kinases. Am. J. Physiol. 275, C239-C250.PubMedGoogle Scholar
  42. 42.
    Di Ciano-Oliveira, C., Sirokmany, G., Szaszi, K., Arthur, W. T., Masszi, A., Peterson, M., et al. (2003) Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation. Am. J. Physiol. 285, C555-C566.Google Scholar
  43. 43.
    Russell, J. M. (2000) Sodium-potassium-chloride cotransport. Physiol. Rev. 80, 211–276.PubMedGoogle Scholar
  44. 44.
    Kapus, A., Grinstein, S., Wasan, S., Kandasamy, R., and Orlowski, J. (1994) Functional characterization of three isoforms of he Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. J. Biol. Chem. 269, 23544–23552.PubMedGoogle Scholar
  45. 45.
    Bookstein, C., Musch, M. W., DePaoli, A., Xie, Y., Villereal, M., Rao, M. C., et al. (1994) A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J. Biol. Chem. 269, 29704–29709.PubMedGoogle Scholar
  46. 46.
    Attaphitaya, S., Nehrke, K., and Melvin, J. E. (2001) Acute inhibition of the brain-specific Na+/H+ exchanger isoform 5 by protein kinases A and C and cell shrinkage. Am. J. Physiol. 281, C1146-C1157.Google Scholar
  47. 47.
    Fliegel, L. and Fröhlich, O. (1993) The Na+/H+ exchange: an update on structure, regulation and cardiac physiology. Biochem. J. 296, 273–285.PubMedGoogle Scholar
  48. 48.
    Shrode, L. D., Klein, J. D., O'Neill, W. C., and Putnam, R. W. (1995) Shrinkage-induced activation of Na+/H+ exchange in primary rat astrocytes: role of myosin light-chain kinase. Am. J. Physiol. 269, C257-C266.PubMedGoogle Scholar
  49. 49.
    Grinstein, S., Woodside, M., Sardet, C., Pouyssegur, J., and Rotin, D. (1992) Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J. Biol. Chem. 267, 23823–23828.PubMedGoogle Scholar
  50. 50.
    Bianchini, L., Kapus, A., Lukacs, G., Wasan, S., Wakabayashi, S., Pouyssegur, J., et al. (1995) Responsiveness of mutants of NHE1 isoform of Na+/H+ antiport to osmotic stress. Am. J. Physiol. 269, C998-C1007.PubMedGoogle Scholar
  51. 51.
    Krump, E., Nikitas, K., and Grinstein, S. (1997) Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J. Biol. Chem. 272, 17303–17311.PubMedGoogle Scholar
  52. 52.
    Grinstein, S., Goetz-Smith J. D., Stewart, D., Beresford, B. J., and Mellors, A. (1986) Protein phosphorylation during activation of Na+/H+ exchange by phorbol esters and by osmotic shrinking. Possible relation to cell pH and volume regulation. J. Biol. Chem. 261, 8009–8016.PubMedGoogle Scholar
  53. 53.
    Pedersen, S. F., Kramhoft, B., Jorgensen, N. K., and Hoffmann, E. K. (1996) Shrinkage-induced activation of the Na+/H+ exchanger in Ehrlich ascites tumor cells: mechanisms involved in the activation and a role for the exchanger in cell volume regulation. J. Membr. Biol. 149, 141–159.PubMedGoogle Scholar
  54. 54.
    Bertrand, B., Wakabayashi, S., Ikeda, T., Pouyssegur, J., and Shigekawa, M. (1994) The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J. Biol. Chem. 269, 13703–13709.PubMedGoogle Scholar
  55. 55.
    Roger, F., Martin, P.-Y., Rousselot, M., Favre, H., and Féraille, E. (1999) Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle's loop. J. Biol. Chem. 274, 34103–34110.PubMedGoogle Scholar
  56. 56.
    Bustamante, M., Roger, F., Bochaton-Piallat, M.-L., Gabbiani, G., Martin, P.-Y., and Feraille, E. (2003) Regulatory volume increase is associated with p38 kinase-dependent actin cytoskeleton remodeling in rat kidney MTAL. Am. J. Physiol. 285, F336-F347.Google Scholar
  57. 57.
    Bildin, V. N., Wang, Z., Iserovich, P., and Reinach, P. S. (2003) Hypertonicity-induced p38MAPK activation elicits recovery of corneal epithelial cell volume and layer integrity. J. Membr. Biol. 193, 1–13.PubMedGoogle Scholar
  58. 58.
    Fisher, R. S., Persson, B.-E., and Spring, K. R. (1981) Epithelial cell volume regulation: bicarbonate dependence. Science 214, 1357–1359.PubMedGoogle Scholar
  59. 59.
    Jiang, L., Chernova, M. N., and Alper, S. L. (1997) Secondary regulatory volume increase conferred on Xenopus oocytes by expression of AE2 anion exchanger. Am. J. Physiol. 272, C191-C202.PubMedGoogle Scholar
  60. 60.
    Humphreys, B. D., Jiang, L., Chernova, M. N., and Alper, S. L. (1995) Hypertonic activation of AE2 anion exchanger in Xenopus oocytes via NHE-mediated intracellular alkalinization. Am. J. Physiol. 268, C201-C209.PubMedGoogle Scholar
  61. 61.
    Hoffmann, E. K. (1978) Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells, in Osmotic and Volume Regulation (Jorgensen, C. B. and Skadhauge E., eds.), Alfred Benzon Symposium XI., Munksgaard, Copenhangen, pp. 397–417.Google Scholar
  62. 62.
    Okada, Y., and Hazama, A. (1989) Volume-regulatory ion channels in human epithelial cells. News Physiol. Sci. 4, 238–242.Google Scholar
  63. 63.
    Okada, Y., Hazama, A., and Yuan, W.-L. (1990) Stretch-induced activation of Ca2+-permeable ion channels is involved in the volume regulation of hypotonically swollen epithelial cells. Neurosci. Res. 12, S5-S13.Google Scholar
  64. 64.
    Chan, H. C. and Nelson, D. J. (1992) Chloride-dependent cation conductance activated during cellular shrinkage. Science 257, 669–671.PubMedGoogle Scholar
  65. 65.
    Korbmacher, C., Volk, T., Segal, A. S., Boulpaep, E. L., and Frömter, E. (1995) A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J. Membr. Biol. 146, 29–45.PubMedGoogle Scholar
  66. 66.
    Volk, T., Frömter, E., and Korbmacher, C. (1995) Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc. Natl. Acad. Sci. U. S. A. 92, 8478–8492.PubMedGoogle Scholar
  67. 67.
    Nelson, D. J., Tien, X.-Y., Xie, W., Brasitus, T. A., Kaetzel, M. A., and Dedman, J. R. (1996) Shrinkage activates a nonselective conductance: involvment of a Walker-motif protein and PKC. Am. J. Physiol. 270, C179-C191.PubMedGoogle Scholar
  68. 68.
    Koch, J.-P. and Korbmacher, C. (1999) Osmotic shrinkage activates nonselective cation (NSC) channels in various cell types. J. Membr. Biol. 168, 131–139.PubMedGoogle Scholar
  69. 69.
    Shen, M.-R., Yang, T.-P., and Tang, M.-J. (2002) A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca2+ entry and Cl channel activity. J. Biol. Chem. 277, 15592–15599.PubMedGoogle Scholar
  70. 70.
    Wehner, F., Shimizu, T., Sabirov, R., and Okada, Y. (2003) Hypertonic activation of a non-selective cation conductance in HeLa cells and its contribution to cell volume regulation. FEBS Lett. 551, 20–24.PubMedGoogle Scholar
  71. 71.
    Wehner, F., Sauer, H., and Kinne, R. K. (1995) Hypertonic stress increases the Na+ conductance of rat hepatocytes in primary culture. J. Gen. Physiol. 105, 507–535.PubMedGoogle Scholar
  72. 72.
    Civan, M. M., Coca-Prados, M., and Peterson-Yantorno, K. (1996) Regulatory volume increase of human non-pigmented ciliary epithelial cells. Exp. Eye Res. 62, 627–640.PubMedGoogle Scholar
  73. 73.
    Böhmer, C. and Wehner, F. (2001) The epithelial Na+ channel (ENaC) is related to the hypertonicity-induced Na+ conductance in rat hepatocytes. FEBS Lett. 494, 125–128.PubMedGoogle Scholar
  74. 74.
    Heinzinger, H., van den Boom, F., Tinel, H., and Wehner, F. (2001) In rat hepatocytes, the hypertonic activation of Na+ conductance and Na+−K+−2Cl symport-but not Na+−H+ antiport-is mediated by protein kinase C. J. Physiol. (Lond.) 536, 703–715.Google Scholar
  75. 75.
    Lawonn, P., Hoffmann, E. K., Hougaard, C., and Wehner, F. (2003) A cell shrinkage-induced non-selective cation conductance with a novel pharmacology in Ehrlich-Lettre-ascites tumour cells. FEBS Lett. 539, 115–119.PubMedGoogle Scholar
  76. 76.
    Feranchak, A. P., Berl, T., Capasso, J., Wojtaszek, P. A., and Fitz, J. G. (2001) p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability. J. Clin. Invest. 108, 1495–1504.PubMedGoogle Scholar
  77. 77.
    Suzuki, M., Sato, J., Kutsuwada, K., Ooki, G., and Imai, M. (1999) Cloning of a stretch-inhabitable nonselective cation channel. J. Biol. Chem. 274, 6330–6335.PubMedGoogle Scholar
  78. 78.
    Okada, Y., Hazama, A., Hashimoto, A., Maruyama, Y., and Kubo, M. (1992) Exocytosis upon osmotic swelling in human epithelial cells. Biochim. Biophys. Acta 1107, 201–205.PubMedGoogle Scholar
  79. 79.
    Greger, R., Allert, N., Fröbe, U., and Normann, C. (1993) Increase in cytosolic Ca2+ regulates exocytosis and Cl conductance in HT29 cells. Pflügers Arch. 424, 329–334.PubMedGoogle Scholar
  80. 80.
    Ross, P. E., Garber, S. S., and Cahalan, M. D. (1994) Membrane chloride conductance and capacitance in Jurkat T lymphocytes during osmotic swelling. Biophys. J. 66, 169–178.PubMedGoogle Scholar
  81. 81.
    Heinke, S., Raskin, G., De Smet, P., Droogmans, G., Van Driessche, W., and Nilius, B. (1997) Simultaneous measurement of during cell swelling in macrovascular endothelium. Cell Physiol. Biochem. 7, 19–24.Google Scholar
  82. 82.
    Tohda, H., Foskett, J. K., O'Brodovich, H., and Marunaka, Y. (1994) Cl regulation of a Ca2+-activated nonselective cation channel in beta-agonist-treated fetal distal lung epithelium. Am. J. Physiol. 266, C104-C109.PubMedGoogle Scholar
  83. 83.
    Robertson, M. A. and Foskett, J. K. (1994) Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl]i. Am. J. Physiol. 267, C146-C156.PubMedGoogle Scholar
  84. 84.
    Grinstein, S., Clarke, C. A., Dupre, A., and Rothstein, A. (1982) Volume-induced increase of anion permeability in human lymphocytes. J. Gen. Physiol. 80, 801–823.PubMedGoogle Scholar
  85. 85.
    Hoffmann, E. K., Simonsen, L. O., and Lambert, I. H. (1984) Volume-induced increase of K+ and Cl permeabilities ascites tumor cells. Role of internal Ca2+. J. Membr. Biol. 78, 211–222.PubMedGoogle Scholar
  86. 86.
    Chamberlin, M. E. and Strange, K. (1989) Anisosmotic cell volume regulation: a comparative view. Am. J. Physiol. 257, C159-C173.PubMedGoogle Scholar
  87. 87.
    Motais, R., Fiévet, B., Borgese, F., and Garcia-Romeu, F. (1997) Association of the band 3 protein with a volume-activated, anion and amino-acid channel: a molecular approach. J. Exp. Biol. 200, 361–367.PubMedGoogle Scholar
  88. 88.
    Pasantes-Morales, H., Franco, R., Torres-Marquez, M. E., Hernandez-Fonseca, K., and Ortega, A. (2000) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell. Physiol. Biochem. 10, 361–370.PubMedGoogle Scholar
  89. 89.
    Lauf, P. K. and Adragna, N. C. (2000) K−Cl cotransport: properties and molecular mechanism. Cell Physiol. Biochem. 10, 341–354.PubMedGoogle Scholar
  90. 90.
    Thornhill, W. B. and Laris, P. C. (1984) KCl loss and cell shrinkage in the Ehrilich ascites tumour cell induced by hypotonic media, 2-deoxyglucose and propanolol. Biochem. Biophys. Acta 773, 207–218.PubMedGoogle Scholar
  91. 91.
    Perry, P. B. and O'Neill, W. C. (1993) Swelling-activated K fluxes in vascular endothelial cells: volume regulation via K−Cl cotransport and K channel. Am. J. Physiol. 265, C763-C769.PubMedGoogle Scholar
  92. 92.
    Shen, M.-R., Chou, C.-Y., and Ellory, J. C. (2000) Volume-sensitive KCl cotransport associated with human cervical carcinogenesis. Pflügers Arch. 440, 751–760.PubMedGoogle Scholar
  93. 93.
    Orlando, G. S., Tobey, N. A., Wang, P., Abdulnour-Nakhoul, S., and Orlando, R. C. (2002) Regulatory volume decrease in human esophageal epithelial cells. Am. J. Physiol. 283, G932-G937.Google Scholar
  94. 94.
    Jennings, M. L. and Schultz, R. K. (1991) Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. J. Gen. Physiol. 97, 799–817.PubMedGoogle Scholar
  95. 95.
    Kaji, D. M. and Tsukitani, Y. (1991) Role of protein phosphatase in activation of KCl cotransport in human erythrocytes. Am. J. Physiol. 260, C176-C180.PubMedGoogle Scholar
  96. 96.
    Cossins, A. R. (1991) A sense of cell size. Nature 352, 667–668.PubMedGoogle Scholar
  97. 97.
    Dunham, P. B., Klimczak, J., and Logue, P. J. (1993) Swelling activation of K−Cl cotransport in LK sheep erythrocytes: a three state process. J. Gen. Physiol. 101, 733–766.PubMedGoogle Scholar
  98. 98.
    Sachs, J. R. and Martin, D. W. (1993) The role of ATP in swelling-stimulated K−Cl cotransport in human red cell ghosts: phosphorylation-dephosphorylation events are not in the signal transduction pathway. J. Gen. Physiol. 102, 551–573.PubMedGoogle Scholar
  99. 99.
    Jennings, M. J. (1999) Volume-senseitive K+/Cl cotransport in rabbit erythrocytes. Analysis of the rate-limiting activation and inactivation events. J. Gen. Physiol. 114, 743–757.PubMedGoogle Scholar
  100. 100.
    Christensen, O. (1987) Mediation of cell volume regulation by Ca2+ influx through stretchactivated channels. Nature 330, 66–68.PubMedGoogle Scholar
  101. 101.
    Ubl, J., Murer, H., and Kolb, H.-A. (1988) Hypotonic shock evokes opening of Ca2+-activated K channels in opossum kidney cells. Pflügers Arch. 412, 551–553.PubMedGoogle Scholar
  102. 102.
    Taniguchi, J. and Guggino, W. B. (1989) Membrane stretch: a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am. J. Physiol. 257, F347-F352.PubMedGoogle Scholar
  103. 103.
    Dubé, L., Parent, L., and Sauvé, R. (1990) Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells. Am. J. Physiol. 259, F348-F356.PubMedGoogle Scholar
  104. 104.
    Kawahara, K., Ogawa, A., and Suzuki, M. (1991) Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells. Am. J. Physiol. 260, F27-F33.PubMedGoogle Scholar
  105. 105.
    Christensen, O. and Hoffmann, E. K. (1992) Cell swelling activates K+ and Cl channels as well as nonselective, stretch-activated cation channels in Ehrlich ascites tumor cells. J. Membr. Biol. 129, 13–36.PubMedGoogle Scholar
  106. 106.
    Weiss, H. and Lang, F. (1992) Ion channels activated by swelling of Madin Darby Canine Kidney (MDCK) cells. J. Membr. Biol. 126, 109–114.PubMedGoogle Scholar
  107. 107.
    Ling, B. N., Webster, C. L., and Eaton, D. C. (1992) Eicosanoids modulate apical Ca2+-dependent K+ channels in cultured rabbit principal cells. Am. J. Physiol. 263, F116-F126.PubMedGoogle Scholar
  108. 108.
    Schlatter, E. (1993) Regulation of ion channels in the cortical collecting duct. Renal Physiol. Biochem. 16, 21–36.PubMedGoogle Scholar
  109. 109.
    Park, K.-P., Beck, J. S., Douglas, I. J., and Brown, P. D. (1994) Ca2+-activated K+ channels are involved in regulatory volume decrease in acinar cells isolated from the rat lacrimal gland. J. Membr. Biol. 141, 193–201.PubMedGoogle Scholar
  110. 110.
    Stoner, L. C. and Morley GE (1995) Effect of basolateral or apical hyposmolarity on apical maxi K channels of everted rat collecting tubule. Am. J. Physiol. 268, F569-F580.PubMedGoogle Scholar
  111. 111.
    Khanna, R., Chang, M. C., Joiner, W. J., Kaczmarek, L. K., and Schlichter, L. C. (1999) hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J. Biol. Chem. 274, 14838–14849.PubMedGoogle Scholar
  112. 112.
    Weskamp, M., Seidl, W., and Grissmer, S. (2000) Characterization of the increase in [Ca2+]i during hypotonic shock and the involvement of Ca2+-activated K+ channels in the regulatory volume decrease in human osteoblast-like cells. J. Membr. Biol. 178, 11–20.PubMedGoogle Scholar
  113. 113.
    Sackin, H. (1989) A stretch-activated K+ channel sensitive to cell volume. Proc. Natl. Acad. Sci. U.S.A. 86, 1731–1735.PubMedGoogle Scholar
  114. 114.
    Cemerikic, D. and Sackin, H. (1993) Substrate activation of mechanosensitive, whole cell currents in renal proximal tubule. Am. J. Physiol. 264, F697-F714.PubMedGoogle Scholar
  115. 115.
    Martina, M., Morzymas, J. W., and Vittur, F. (1997) Membrane stretch activates a potassium channel in pig articular chondrocytes. Biochim. Biophys. Acta 1329, 205–210.PubMedGoogle Scholar
  116. 116.
    Vanoye, C. G. and Reuss, L. (1999) Stretch-activated single K+ channels account for whole-cell currents elicited by swelling. Proc. Natl. Acad. Sci. U. S. A. 96, 6511–6516.PubMedGoogle Scholar
  117. 117.
    Duranton, C., Mikulovic, E., Tauc, M., Avella, M., and Poujeol P. (2000) Potassium channels in primary cultures of seawater fish gill cells. Channel activation by hypotonic shock. Am. J. Physiol. 279, R1659-R1670.Google Scholar
  118. 118.
    Reuss, L., Vanoye, C. A., Altenberg, G. A., Vergara, L., Subramaniam, M., and Torres, R. (2000) Cell-volume changes and ion conductances in amphibian gallbladder epithelium. Cell. Physiol. Biochem. 10, 385–392.PubMedGoogle Scholar
  119. 119.
    Pácha, J., Frindt, G., Sackin, H., and Palmer, L. G. (1991) Apical maxi K channels in inter-calated cells of CCT. Am. J. Physiol. 261, F696-F705.PubMedGoogle Scholar
  120. 120.
    Kawakubo, T., Naruse, K., Matsubara, T., Hotta, N., and Sokabe, M. (1999) Characterization of a newly found stretch-activated KCa,ATP channel in cultured chick ventricular myocytes. Am. J. Physiol. 276, H1827-H1838.PubMedGoogle Scholar
  121. 121.
    Falke, L. C. and Misler, S. (1989) Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells. Proc. Natl. Acad. Sci. U. S. A. 86, 3919–3923.PubMedGoogle Scholar
  122. 122.
    Schoenmakers, Th. J. M., Vaudry, H., and Cazin, L. (1995) Osmo- and mechanosensitivity of the transient outward K+ current in a mammalian neuronal cell line. J. Physiol. (Lond.) 489, 419–430.Google Scholar
  123. 123.
    Baraban, S. C., Bellingham, M. C., Berger, A. J., and Schwartzkroin, P. A. (1997) osmolarity modulates K+ channel function on rat hippocampal interneurons but not CA1 pyramidal neurons. J. Physiol. (Lond.) 498, 679–689.Google Scholar
  124. 124.
    Sasaki, N., Mitsuiye, T., Wang, Z., and Noma, A. (1994) Increase of the delayed rectifier K+ and Na+−K+ pump currents by hypotonic solutions in guinea pig cardiac myocytes. Circ. Res. 75, 887–895.PubMedGoogle Scholar
  125. 125.
    Deutsch, C. and Chen, L.-Q. (1993) Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc. Natl. Acad. Sci. U. S. A. 99, 10036–10040.Google Scholar
  126. 126.
    Lock, H. and Valverde, M. A. (2000) Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelia cells. J. Biol. Chem. 275, 34849–34852.PubMedGoogle Scholar
  127. 127.
    Niemeyer, M. I., Cid, L. P., Barros, L. F., and Sepulveda, F. V. (2001) Modulation of the twopore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276, 43166–43174.PubMedGoogle Scholar
  128. 128.
    Wang, J., Morishima, S., and Okada, Y. (2002) IK channels are involved in the regulatory volume decrease in human epithelial cells. Am. J. Physiol. 284, C77-C84.Google Scholar
  129. 129.
    Kim, D. and Fu, C. (1993) Activation of a nonselective cation channels by swelling in atrial cells. J. Membr. Biol. 135, 27–37.PubMedGoogle Scholar
  130. 130.
    Duncan, R. L., Kizer, N., Barry, E. L. R., Friedman, P. A., and Hruska, K. A. (1996) Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc. Natl. Acad. Sci. U. S. A. 93, 1864–1869.PubMedGoogle Scholar
  131. 131.
    Clemo, H. F. and Baumgarten, C. M. (1997) Swelling-activated Gd3+-sensitive cation current and cell volume regulation in rabbit ventricular myocytes. J. Gen. Physiol. 110, 297–312.PubMedGoogle Scholar
  132. 132.
    Grunnet, M., Jespersen, T., MacAulay, N., Jorgensen, N. K., Schmitt, N., Pongs, O., et al. (2003) KCNQ1 channels sense small changes in cell volume. J. Physiol. (Lond.) 549, 419–427.Google Scholar
  133. 133.
    Thiemann, A., Grunder, S., Pusch, M., and Jentsch, T. J. (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 57–60.PubMedGoogle Scholar
  134. 134.
    Grunder, S., Thiemann, A., Pusch, M., and Jentsch, T. J. (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759–762.PubMedGoogle Scholar
  135. 135.
    Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. (2002) Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568.PubMedGoogle Scholar
  136. 136.
    Strange, K., Emma, F., and Jackson, P. S. (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270, C711-C730.PubMedGoogle Scholar
  137. 137.
    Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. (1997) Properties of volume-regulated and anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69–119.PubMedGoogle Scholar
  138. 138.
    Okada, Y., Oiki, S., Hazama, A., and Morishima, S. (1998) Criteria for the molecular identification of the volume-sensitive outwardly rectifying Cl channel. J. Gen. Physiol. 112, 365–367.PubMedGoogle Scholar
  139. 139.
    Okada, Y. (1999) A scaffolding for regulation of volume-sensitive Cl channels. J. Physiol. (Lond.) 520, 2.Google Scholar
  140. 140.
    Tilly, B. C., van den Berghe, N., Tertoolen, L. G. J., Edixhoven, M. J., and de Jonge, H. R. (1993) Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J. Biol. Chem. 268, 19919–19922.PubMedGoogle Scholar
  141. 141.
    Tilly, B. C., Edixhoven, M. J., Tertoolen, L. G. J., Morii, N., Saitoh, Y., Narumiya, S., et al. (1996) Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol. Biol. Cell 7, 1419–1427.PubMedGoogle Scholar
  142. 142.
    Crépel, V., Panenka, W., Kelly, M. E. M., and MacVicar, B. A. (1998) Mitogen-activated protein and tyrosine kinases in the activation of astrocyte volume-activated chloride current. J. Neurosci. 15, 1196–1206.Google Scholar
  143. 143.
    Lepple-Wienhues, A., Szabò, I., Laun, T., Kaba, N. K., Gulbins, E., and Lang, F. (1998) The tyrosine kinase p56ick mediates activation of swelling-induced chloride channels in lymphocytes. J. Cell Biol. 141, 281–286.PubMedGoogle Scholar
  144. 144.
    Voets, T., Manolopoulos, V., Eggermont, J., Ellory, C., Droogmans, G., and Nilius, B. (1998) Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J. Physiol. (Lond.) 506, 341–352.Google Scholar
  145. 145.
    Shi, C., Barnes, S., Coca-Prados, M., and Kelly, M. E. (2002) Protein tyrosine kinase and protein phosphatase signaling pathways regulate volume-sensitive chloride currents in a nonpigmented ciliary epithelial cell line. Invest. Ophthalmol. Vis. Sci. 43, 1525–1532.PubMedGoogle Scholar
  146. 146.
    Doroshenko, P. (1998) Pervanadate inhibits volume-sensitive chloride current in bovine chromaffin cells. Pflügers Arch. 435, 303–309.PubMedGoogle Scholar
  147. 147.
    Thoroed, S. M., Bryan-Sisneros, A., and Doroshenko, P. (1999) Protein phosphotyrosine phosphatase inhibitors suppress regulatory volume decrease and the volume-sensitive Cl conductance in mouse fibroblasts. Pflügers Arch. 438, 133–140.PubMedGoogle Scholar
  148. 148.
    Feranchak, A. P., Roman, R. M., Schwiebert, E. M., and Fitz, J. G. (1998) Phosphatidylinositol 3-kinase contributes to cell volume regulation through effects on ATP release. J. Biol. Chem. 273, 14906–14911.PubMedGoogle Scholar
  149. 149.
    Nilius, B., Voets, T., Prenen, J., Barth, H., Aktories, K., Kaibuchi, K., et al. (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cell. J. Physiol. (Lond.) 516, 67–74.Google Scholar
  150. 150.
    Nilius, B., Prenen, J., Walsh, M. P., Carton, I., Bollen, M., Droogmans, G., et al. (2000) Myosin light chain phosphorylation-dependent modulation of volume-regulated anion channels in macrovascular endothelium. FEBS Lett. 466, 346–350.PubMedGoogle Scholar
  151. 151.
    Oiki, S., Kubo, M., and Okada, Y. (1998) Electrophysiological properties of volume-regulated Cl channels in intestinal epithelial cells, in Cell Volume Regulation: The Molecular Mechanism and Volume Sensing Machinery (Okada, Y., ed.), Elsevier, Amsterdam, pp. 125–129.Google Scholar
  152. 152.
    Cannon, C. L., Basavappa, S., and Strange, K. (1998) Intracellular ionic strength regulates the volume sensitivity of a swelling-activated anion channel. Am. J. Physiol. 275, C416-C422.PubMedGoogle Scholar
  153. 153.
    Nilius, B., Prenen, J., Voets, T., Eggermont, J., and Droogmans, G. (1998) Activation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cell. J. Physiol. (Lond.) 506, 353–361.Google Scholar
  154. 154.
    Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. U. S. A. 96, 5298–5303.PubMedGoogle Scholar
  155. 155.
    Sabirov, R. Z., Prenen, J., Tomita, T., Droogmans, G., and Nilius, B. (2000) Reduction of ionic strength activates single volume-regulated anion channels (VRAC) in endothelial cells. Pflügers Arch. 439, 315–320.PubMedGoogle Scholar
  156. 156.
    Wang, Y., Roman, R., Lidofski, S. D., and Fitz, J. G. (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc. Natl. Acad. Sci. U. S. A. 93, 12020–12025.PubMedGoogle Scholar
  157. 157.
    Roman, R. M., Wang, Y., Lidofsky, S. D., Feranchak, A. P., Lomri, N., Scharschmidt, B. F., et al. (1997) Hepatocellular ATP-binding cassette protein expression enhances ATP release and autocrine regulation of cell volume. J. Biol. Chem. 272, 21970–21976.PubMedGoogle Scholar
  158. 158.
    Roman, R. M., Feranchak, A. P., Salter, K. D., Wang, Y., and Fitz, J. G. (1999) Endogenous ATP release regulates Cl secretion in cultured human and rat biliary epithelial cells. Am. J. Physiol. 276, G1391-G1400.PubMedGoogle Scholar
  159. 159.
    Feranchak, A. P., Fitz, J. G., and Roman, R. M. (2000) Volume-sensitive purinergic signaling in human hepatocytes. J. Hepatol. 33, 174–182.PubMedGoogle Scholar
  160. 160.
    Hazama, A., Shimizu T., Ando-Akatsuka, Y., Hayashi, S., Tanaka, S., Maeno, E., et al. (1999) Swelling-induced, CFTR-independent ATP release from a human epithelial cell line. Lack of correlation with volume-sensitive Cl channels. J. Gen. Physiol. 114, 525–533.PubMedGoogle Scholar
  161. 161.
    Dezaki, K., Tsumura, T., Maeno, E., and Okada, Y. (2000) Receptor-mediated facilitation of cell volume regulation by swelling-induced ATP release in human epithelial cells. Jpn. J. Physiol. 50, 235–241.PubMedGoogle Scholar
  162. 162.
    Hazama, A., Fan, H., Abdullaev, I., Maeno, E., Tanaka, S., Ando-Akatsuka, Y., et al. (2000) Swelling-activated, cystic fibrosis transmembrane conductance regulator-augmented ATP release and Cl conductances in C127 cells. J. Physiol. (Lond.) 523, 1–11.Google Scholar
  163. 163.
    Lemonnier, L., Prevarskaya, N., Shuba, Y., VandenAbeele, F., Nilius, B., Mazurier, J., et al. (2002) Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels. FASEB J. 16, 222–224.PubMedGoogle Scholar
  164. 164.
    Shen, M. R., Furla, P., Chou, C. Y., and Ellory, J. C. (2002) Myosin light chain kinase modulates hypotonicity-induced Ca2+ entry and Cl channel activity in human cervical cancer cells. Pflügers Arch. 444, 276–285.PubMedGoogle Scholar
  165. 165.
    Barriere, H., Belfodil, R., Rubera, I., Tauc, M., Poujeol, C., Bidet, M., et al. (2003) CFTR null mutation altered cAMP-sensitive and swelling-activated Cl currents in primary cultures of mouse nephron. Am. J. Physiol. 284, F796-F811.Google Scholar
  166. 166.
    Sabirov, R. Z., Dutta, A. K., and Okada, Y. (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J. Gen. Physiol. 118, 251–266.PubMedGoogle Scholar
  167. 167.
    Reisin, I. L., Prat, A. G., Abraham, E. H., Amara, J. F., Grygory, R. J., Ausiello, D. A., et al. (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J. Boil. Chem. 269, 20584–20591.Google Scholar
  168. 168.
    Schwiebert, E. K., Egan, M. E., Hwang, T.-H., Fulmer, S. B., Allen, S. S., Cutting, G. R., et al. (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81, 1063–1073.PubMedGoogle Scholar
  169. 169.
    Hisadome, K., Koyama, T., Kimura, C., Droogmans, G., Ito, Y., and Oike, M. (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J. Gen. Physiol. 119, 511–520.PubMedGoogle Scholar
  170. 170.
    Dutta, A. K., Okada, Y., and Sabirov, R. Z. (2002) Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid. J. Physiol. (Lond.) 542, 803–816.Google Scholar
  171. 171.
    Bell, P. D., Lapointe, J.-Y., Sabirov, R., Hayashi, S., Peti-Peterdi, J., Manabe, K., et al. (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc. Natl. Acad. Sci. U.S.A. 100, 4322–4327.PubMedGoogle Scholar
  172. 172.
    Kirk, K. (1997) Swelling-activated organic osmolyte channels. J. Membr. Biol. 158, 1–16.PubMedGoogle Scholar
  173. 173.
    Kimelberg, H. K. and Mongin, A. A. (1998) Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology, in Cell Volume Regulation (Lang, F., ed.), Karger, Basel, pp. 240–257.Google Scholar
  174. 174.
    Hand, M., Morrison, R., and Strange, K. (1997) Characterization of volume-sensitive organic osmolyte efflux and anion current in Xenopus oocytes. J. Membr. Biol. 157, 9–16.PubMedGoogle Scholar
  175. 175.
    Manolopoulos, V. G., Droogmans G., and Nilius, B. (1997) Hypotonicity and thrombin activate taurine efflux in BC3H1 and C2C12 myoblasts that is down regulated during differentiation. Biochem. Biophys. Res. Commun. 232, 74–79.PubMedGoogle Scholar
  176. 176.
    Manolopoulos, V. G., Voets, T., Declercq, P. E., Droogmans, G., and Nilius, B. (1997) Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells. Am. J. Physiol. 273, C214-C222.PubMedGoogle Scholar
  177. 177.
    Rutledge, E. M., Aschner, M., and Kimelberg, H. K. (1998) Pharmacological characterization of swelling-induced D-[3H]aspartate release from primary astrocyte cultures. Am. J. Physiol. 274, C1511-C1520.PubMedGoogle Scholar
  178. 178.
    Rutledge, E. M., Mongin, A. A., and Kimelberg, H. K. (1999) Intracellular ATP depletion inhibits swelling-induced D-[3H]aspartate release from primary astocyte cultures. Brain Res. 842, 39–45.PubMedGoogle Scholar
  179. 179.
    Hoffmann, E. K. and Lambert, I. H. (1994) On the similarity between the small Cl channel and the taurine channel activated after cell swelling in Ehrlich ascites tumor cells. Jpn. J. Physiol. 44, S49-S53.PubMedGoogle Scholar
  180. 180.
    Morán, J., Miranda, D., Peña-Segura, C., and Pasantes-Morales, H. (1997) Volume regulation in NIH/3T3 cells not expressing P-glycoprotein. II. Chloride and amino acid fluxes. Am. J. Physiol. 272, C1804-C1809.PubMedGoogle Scholar
  181. 181.
    Stutzin, A., Torres, R., Oporto, M., Pacheco, P., Eguiguren, A. L., Cid, L. P., et al. (1999) Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am. J. Physiol. 277, C392-C402.PubMedGoogle Scholar
  182. 182.
    Pollock, A. S. and Arieff, A. I. (1980) Abnormalities of cell volume regulation and their functional consequences. Am. J. Physiol. 239, F195-F205.PubMedGoogle Scholar
  183. 183.
    Häussinger, D. and Lang, F. (1991) Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim. Biophys. Acta 1071, 331–350.PubMedGoogle Scholar
  184. 184.
    Häussinger, D., Lang, F., and Gerok, W. (1994) Regulation of cell function by the cellular hydration state. Am. J. Physiol. 267, E343-E355.PubMedGoogle Scholar
  185. 185.
    Strange, K. (1994) Are all cell volume changes the same? News Physiol. Sci. 9, 223–228.Google Scholar
  186. 186.
    Lang, F., Busch, G. L., Völkl, H., and Häussinger, D. (1995) Cell volume: a second message in regulation of cellular function. News Physiol. Sci. 10, 18–22.Google Scholar
  187. 187.
    McManus, M. L., Churchwell, K. B., and Strange, K. (1995) Regulation of cell volume in health and disease. New Engl. J. Med. 333, 1260–1266.PubMedGoogle Scholar
  188. 188.
    Burg, M. B., Kwon, E. D., and Kültz, D. (1996) Osmotic regulation of gene expression. FASEB J. 10, 1598–1606.PubMedGoogle Scholar
  189. 189.
    Takuwa, N. and Takuwa, Y. (1996) Signal transduction of cell-cycle regulation: its temporospacial architecture. Jpn. J. Physiol. 46, 431–449.PubMedGoogle Scholar
  190. 190.
    Galcheva-Gargova, Z., Dérijard, B., Wu, I.-H., and Davis, R. J. (1994) An osmosensing signal transduction pathway in mammalian cells. Science 265, 806–808.PubMedGoogle Scholar
  191. 191.
    Han, J., Lee, J.-D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.PubMedGoogle Scholar
  192. 192.
    Maeda, T., Wurgler-Murphy, S. M., and Saito, H. (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242–245.PubMedGoogle Scholar
  193. 193.
    Maeda, T., Takekawa, M., and Saito, H. (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554–558.PubMedGoogle Scholar
  194. 194.
    Häussinger, D. and Schliess, F. (1999) Osmotic induction of signaling cascades: role in regulation of cell function. Biochem. Biophys. Res. Commun. 255, 551–555.PubMedGoogle Scholar
  195. 195.
    Allen, S. P., Liang, H. M., Hill, M. A., and Prewitt, R. L. (1996) Elevated pressure stimulates protooncogene expression in isolated mesenteric arteries. Am. J. Physiol. 271, H1517-H1523.PubMedGoogle Scholar
  196. 196.
    MacKenna, D. A., Dolfi, F., Vuori, K., and Ruoslahti, E. (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J. Clin. Invest. 101, 301–310.PubMedCrossRefGoogle Scholar
  197. 197.
    Brophy, C. M., Mills, I., Rosales, O., Isales, C., and Sumpio, B. E. (1993) Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes. Biochem. Biophys. Res. Commun. 190, 576–581.PubMedGoogle Scholar
  198. 198.
    Lehtonen, J. Y. A. and Kinnunen, P. K. J. (1995) Phospholipase A2 as a mechanosensor. Biophys. J. 68, 1888–1894.PubMedCrossRefGoogle Scholar
  199. 199.
    Thoroed, S. M., Lauritzen, L., Lambert, I. H., Hansen, H. S., and Hoffmann, E. K. (1997) Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J. Membrane Biol. 160, 47–58.Google Scholar
  200. 200.
    Basavappa, S., Pedersen, S. F., Jørgensen, N. K., Ellory, J. C., and Hoffmann, E. K. (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J. Neurophysiol. 79, 1441–1449.PubMedGoogle Scholar
  201. 201.
    Sukharev, S. I., Blount, P., Martinac, B., and Kung, C. (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657.PubMedGoogle Scholar
  202. 202.
    Kanzaki, M., Nagasawa, M., Kojima, I., Sato, C., Naruse, K., Sokabe, M., et al. (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285, 882–886.PubMedGoogle Scholar
  203. 203.
    Sachs, F. (1987) Baroreceptor mechanisms at the cellular level. Fed. Proc. 46, 12–16.PubMedGoogle Scholar
  204. 204.
    Morris, C. E. (1990) Mechanosensitive ion channels. J. Membrane Biol. 113, 93–107.Google Scholar
  205. 205.
    Sackin, H. (1995) Mechanosensitive channels. Annu. Rev. Physiol. 57, 333–353.PubMedGoogle Scholar
  206. 206.
    Summers, J. C., Trais, L., Lajvardi, R., Hergan, D., Buechler, R., Chang, H., et al. (1997) Role of concentration and size of intracellular macromolecules in cell volume regulation. Am. J. Physiol. 273, C360-C370.PubMedGoogle Scholar
  207. 207.
    Eggermont, J. (2003) Rho's role in cell volume: sensing, strutting, or signaling? Focus on “Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation.” Am. J. Physiol. 285, C509-C511.Google Scholar
  208. 208.
    Oiki, S., Kubo, M., and Okada, Y. (1995) Mg2+ and ATP-dependence of volume-sensitive Cl channels in human epithelial cells. Jpn. J. Physiol. 44 (Suppl. 2), S77-S79.Google Scholar
  209. 209.
    Doroshenko, P. (1999) High intracellular chloride delays the activation of the volume-sensitive chloride conductance in mouse L-fibroblasts. J. Physiol. (Lond.) 514, 437–446.Google Scholar
  210. 210.
    Hardy, S. P., Goodfellow, H. R., Valverde, M. A., Gill, D. R., Sepúlveda, F. V., and Higgins, C. F. (1995) Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J. 14, 68–75.PubMedGoogle Scholar
  211. 211.
    Miwa, A., Ueda, K., and Okada, Y. (1997) Protein kinase C-independent correlation between P-glycoprotein expression and volume sensitivity of Cl channel. J. Membrane Biol. 157, 63–69.Google Scholar
  212. 212.
    Vennekens, R., Trouet, D., Vankeerberghen, A., Voets, T., Cuppens, H., Eggermont, J., et al. (1999) Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator. J. Physiol. (Lond.) 515, 75–85.Google Scholar
  213. 213.
    Ando-Akatsuka, Y., Abdullaev, I. F., Lee, E. L., Okada, Y., and Sabirov, R. Z. (2002) Down-regulation of volume-sensitive Cl channels by CFTR is mediated by the second nucleotide-binding domain. Pflügers Arch. 445, 177–186.PubMedGoogle Scholar
  214. 214.
    Hoffmann, E. K. and Pedersen, S. F. (1998) Sensors and signal transduction in the activation of cell volume regulatory ion transport systems, in Cell Volume Regulation (Lang, F., ed.), Karger, Basel, pp. 50–78.Google Scholar
  215. 215.
    Okada, Y., Maeno, E., Shimizu, T., Dezaki, K., Wang, J., and Morishima, S. (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J. Physiol. (Lond.) 532, 3–16.Google Scholar
  216. 216.
    Bortner, C. D. and Cidlowski, J. A. (1996) Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am. J. Physiol. 271, C950-C961.PubMedGoogle Scholar
  217. 217.
    Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., and Okada, Y. (2000) Normotonic cell shrinkage due to disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. U.S.A. 97, 9487–9492.PubMedGoogle Scholar
  218. 218.
    Mori, S., Morishima, S., Dezaki, K., Takasaki, M., and Okada, Y. (2001) Effects of lactacidosis upon cell volume and volume-sensitive Cl currents in neuronally differentiated NG108-15 cells. Jpn. J. Physiol. 51, (Suppl.) S119.Google Scholar
  219. 219.
    Nabekura, T., Morishima, S., Cover, T. L., Mori, S., Kannan, H., Komune, S., et al. (2003) Recovery from lactacidosis-induced glial cell swelling with the aid of exogenous anion channels. Glia 41, 247–259.PubMedGoogle Scholar
  220. 220.
    Lang, F., Ritter, M., Gamper, N., Huber, S., Fillon, S., Tanneur, V., et al. (2000) Cell volume in the regulation of cell proliferation and apoptotic cell death. Cell Physiol. Biochem. 10, 417–428.PubMedGoogle Scholar
  221. 221.
    Eggermont, J., Trouet, D., Carton, I., and Nilius, B. (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem. Biophys. 35, 263–274.PubMedGoogle Scholar
  222. 222.
    Nilius, B. (2001) Chloride channels go cell cycling. J. Physiol. (Lond.) 532, 581.Google Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of Cell Physiology, National Institute for Physiological SciencesThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
  2. 2.Department of Physiological Sciences, School of Life SciencesThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan

Personalised recommendations