Advertisement

Cell Biochemistry and Biophysics

, Volume 41, Issue 2, pp 193–205 | Cite as

Sharpening the scissors

Mitochondrial fission with aid
  • Yisang Yoon
Review Article

Abstract

Over the past 5 yr. research in mitochondrial morphology has advanced rapidly, mainly as a result of the identification of protein factors involved in mitochondrial fission and fusion. The pathological relevance of these processes becomes clear as apoptotic cell death evidently involves mitochondrial fission and fusion machinery. Although the mechanisms by which cells maintain mitochondrial morphology are now beginning to be understood, interrelation between mitochondrial function and morphology is still not clear. This review describes the recent progress made in mitochondrial fission studies and ventures to seek an intricate link between morphology and function of mitochondria.

Index Entries

Mitochondria dynamics fission fusion DLP1 dynamin hFisl GTPase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koehler, C. M., Leuenberger, D., Merchant, S., Renold, A., Junne, T., and Schatz, G. (1999) Human deafness dystonia syndrome is a mitochondrial disease. Proc. Natl. Acad. Sci. U. S. A. 96, 2141–2146.PubMedCrossRefGoogle Scholar
  2. 2.
    Suomalainen, A (1997) Mitochondrial DNA and disease. Ann. Med. 29, 235–246PubMedGoogle Scholar
  3. 3.
    Suomalainen, A. and Kaukonen, J. (2001) Diseases caused by nuclear genes affecting mtDNA stability. Am. J. Med. Genet. 106, 53–61PubMedCrossRefGoogle Scholar
  4. 4.
    Delettre, C., Lenaers G., Griffoin, J. M., Gigarel, N., Lorenzo, C., Belenguer, P., et al. (2000) Nuclear gene OPA1, encoding a mitochondrial dynam in-related protein, is mutated in dominant optic atrophy. Nat. Genet., 26, 207–210.PubMedCrossRefGoogle Scholar
  5. 5.
    Alexander, C., Votruba, M., Pesch, U. E., Thiselton, D. L., Mayer, S., Moore, A., et al. (2000) OPA1, encoding a dynam in-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211–215.PubMedCrossRefGoogle Scholar
  6. 6.
    Carelli, V., Ross-Cisneros, F. N., and Sadun, A. A. (2002) Optic nerve degeneration and mitochondrial dysfunction genetic and acquired optic neuropathies. Neurochem. Int. 40, 573–584PubMedCrossRefGoogle Scholar
  7. 7.
    Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science 283, 1482–1488.PubMedCrossRefGoogle Scholar
  8. 8.
    Wallace, D. C. (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am. Heart J. 139, S70-S85.PubMedCrossRefGoogle Scholar
  9. 9.
    Maechler, P. and Wollheim, C. B. (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414, 807–812.PubMedCrossRefGoogle Scholar
  10. 10.
    Calabrese, V., Scapagnini, G., Giuffrida Stella, A. M., Bates, T. E., and Clark, J. B. (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem. Res. 26, 739–764.PubMedCrossRefGoogle Scholar
  11. 11.
    Toescu, E. C., Myronova, N. and Verkhratsky, A. (2000). Age-related structural and functional changes of brain mitochondria. Cell Calcium 28, 329–338.PubMedCrossRefGoogle Scholar
  12. 12.
    Manfredi, G., and Beal, M. F. (2000) The role of mitochondria in the pathogenesis of neurode-generative diseases. Brain Pathol. 10, 462–472PubMedCrossRefGoogle Scholar
  13. 13.
    Hekimi, S. and Guarente, L. (2003) Genetics and the specificity of the aging process. Science 299, 1351–1354.PubMedCrossRefGoogle Scholar
  14. 14.
    Mandvilli B. S., Santos, J. H., and Van Houten, B. (2002) Mitochondrial DNA repair and aging Mutat. Res. 509, 127–151Google Scholar
  15. 15.
    Rotig, A., Bonnefont, J. P. and Munnich, A (1996) Mitochondrial diabetes mellitus. Diabetes Metab. 22, 291–298PubMedGoogle Scholar
  16. 16.
    Gerbitz, K. D., Gempel, K., and Brdiczka, D., (1996) Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 45, 113–126.PubMedCrossRefGoogle Scholar
  17. 17.
    Bereiter-Hahn, J. (1990) Behavior of mitochondria in the living cell. Int. Rev. Cytol. 122, 1–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Bereiter-Hahn, J. and Voth, M. (1994) Dynamics of mitochondria in living cells: shape changes, dislocation, fusion, and fission of mitochondria. Microsc. Res. Technique 27, 198–219CrossRefGoogle Scholar
  19. 19.
    Kellermayer, M., Ludany, A., Jobst, K., Szucs, G., Trombitas, K., and Hazlewood, C. F. (1986) Cocompartmentation of proteins and K+within the living cell. Proc. Natl. Acad. Sci. U. S. A. 83, 1011–1015.PubMedCrossRefGoogle Scholar
  20. 20.
    Friedrich, P., Apro-Kovacs, V. A., and Solti., M (1977) Study of metabolite compartmentation in erythrocyte glycolysis. FEBS Lett. 84, 183–186.PubMedCrossRefGoogle Scholar
  21. 21.
    Rintoul, G. L., Filiano, A. J., Brocard, J. B., Kress, G. J., and Reynolds, I. J. (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J. Neurosci. 23, 7881–7888.PubMedGoogle Scholar
  22. 22.
    Skulachev, V. P. (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26, 23–29PubMedCrossRefGoogle Scholar
  23. 23.
    Klionsky, D. J. and Emr, S. D. (2000) Autophagy as a regulated pathway of cellular degradation Science 290, 1717–1721PubMedCrossRefGoogle Scholar
  24. 24.
    Mortimore, G. E., Miotto, G., Venerando, R., and Kadowaki, M. (1996) Autophagy Subcell. Biochem. 27, 93–135.PubMedGoogle Scholar
  25. 25.
    Brunk, U. T. and Terman, A. (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996–2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Terman, A., Dalen, H., Eaton, J. W., Neuzil, J., and Brunk, U. T. (2003) Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp. Gerontol. 38, 863–876.PubMedCrossRefGoogle Scholar
  27. 27.
    Legros, F, Lombes, A., Frachon, P., and Rojo, M. (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354.PubMedCrossRefGoogle Scholar
  28. 28.
    Ishihara, N., Jofuku, A., Eura, Y., and Mihara, K. (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem. Biophys. Res. Commun. 301, 891–898.PubMedCrossRefGoogle Scholar
  29. 29.
    Otsuga, D., Keegan, B. R., Brisch, E., Thatcher, J. W., Hermann, G. J., Bleazard, W. et al. (1998) The dynam in-related GTPase, Dnm 1p, controls mitochondrial morphology in yeast. J. Cell Biol. 143, 333–349PubMedCrossRefGoogle Scholar
  30. 30.
    Hales, K. G. and Fuller, M. T. (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129.PubMedCrossRefGoogle Scholar
  31. 31.
    Hermann, G. J., Thatcher, J. W., Mills, J. P. Hales, K. G., Fuller, M. T., Nunnari, J., et al. (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzolp. J. Cell Biol. 143, 359–373PubMedCrossRefGoogle Scholar
  32. 32.
    Smirnova, E., Shurland, D. L., Ryazantsev, S. N. and Bliek, A. M. V. D. (1998). A human dynamin-related protein controls the distribution, of mitochondria. J. Cell Biol. 143, 351–358.PubMedCrossRefGoogle Scholar
  33. 33.
    Pitts, K. R., Yoon, Y., Krueger, E. W., and McNiven, M. A. (1999) The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell 10, 4403–4417.PubMedGoogle Scholar
  34. 34.
    Labrousse, A. M., Zappaterra, M. D., Rube, D. A. and van der Bliek, A. M. (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826.PubMedCrossRefGoogle Scholar
  35. 35.
    Bleazard, W., McCaffery J. M., King, E. J., Bale, S., Mozdy, A., Tieu, Q., et al (1999) The dynaminrelated GTPase Dnm 1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298–304.PubMedCrossRefGoogle Scholar
  36. 36.
    Sesaki, H., and Jensen, R. E. (1999) Division versus fusion: Dnm 1p and Fzolp antagonistically regulate mitochondrial shape. J. Cell Biol. 147, 699–706.PubMedCrossRefGoogle Scholar
  37. 37.
    Wong, E. D., Wagner, J. A., Gorsich, S. W., McCaffery, J. M., Shaw, J. M., and Nunnari, J. (2000) The dynamin-related GTPase, Mgm 1p, is an intermem brane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341–352.PubMedCrossRefGoogle Scholar
  38. 38.
    Shepard, K. A. and Yaffe, M. P. (1999) The yeast dynamin0like protein, Mgm 1p, functions, on the mitochondrial outer membrane to mediate mitochondrial inheritance. J. Cell. Biol. 144, 711–720.PubMedCrossRefGoogle Scholar
  39. 39.
    Sesaki, H., Southard, S. M., Yaffe, M. P., and Jensen, R. E. (2003) Mgm 1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342–2356.PubMedCrossRefGoogle Scholar
  40. 40.
    Wong, E. D., Wagner J. A., Scott, S. V., Okreglak, V., Holewinske, T. J., Cassidy-Stone, A., et al. (2003) The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303–311.PubMedCrossRefGoogle Scholar
  41. 41.
    Legesse-Miller, A., Massol, R. H., and Kirchhausen, T., (2003) Constriction and dnm 1p recruitment are distinct processes in mitochondrial fission. Mol. Biol. Cell 14, 1953–1963.PubMedCrossRefGoogle Scholar
  42. 42.
    McNiven, M. A., Cao, H., Pitts, K. R., and Yoon, Y. (2000) The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120.PubMedCrossRefGoogle Scholar
  43. 43.
    Sweitzer, S. M. and Hinshaw, J. E. (1998) Dynamin undergoes, a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029.PubMedCrossRefGoogle Scholar
  44. 44.
    Taker, K., Haucke, V., Slepnev, V. Farsad, K. Salazar M., Chen, H., et al. (1998) Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141CrossRefGoogle Scholar
  45. 45.
    Takei K. Slepnev, V. Haucke, V., and Camilli P D (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39.PubMedCrossRefGoogle Scholar
  46. 46.
    Smirnova, E., Griparic, L., Shuland, D. L. and van Der Bliek, A. M. (2001) Dynamin-related protein drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256.PubMedGoogle Scholar
  47. 47.
    Yoon, Y., Pitts, K. R. and McNiven, M. A. (2001) Mammalian dynamin-like protein DLP1 tubulates membranes, Mol. Biol. Cell 12, 2894–2905.PubMedGoogle Scholar
  48. 48.
    Fish, K. N., Schmid, S. L., and Damke, H. (2000) Evidence that dynamin-2 functions as a signaltransducing GTPase. J. Cell Biol. 150, 145–154.PubMedCrossRefGoogle Scholar
  49. 49.
    Sever, S., Muhlberg, A. B., and Schmid, S. L. (1999) Impairment of dynamin's GAP domain stimulates receptor-medated endocytosis. Nature 398, 481–486.PubMedCrossRefGoogle Scholar
  50. 50.
    Sever, S., Damke, H., and Schmid, S. L. (2000) Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 1, 385–392.PubMedCrossRefGoogle Scholar
  51. 51.
    Sever, S., Damke, H., and Schmid, S. L. (2000) Dynamin: GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J. Cell Biol. 150, 1137–1148.PubMedCrossRefGoogle Scholar
  52. 52.
    Fukushima, N. H., Brisch, E., Keegan, B. R., Bleazard, W., and Shaw, J. M. (2001) The GTPase effector domain sequence of the Dnm 1 p GTPase regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Mol. Biol. Cell 12, 2756–2766.PubMedGoogle Scholar
  53. 53.
    Santel, A. and Fuller, M. T. (2001) Control of mitochondrial morphology by a human mitocfusin. J. Cell Sci. 114, 867–874.PubMedGoogle Scholar
  54. 54.
    Rapaport, D., Brunner, M., Neupert, W., and Westermann, B. (1998) Fzolp is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273, 20150–20155.PubMedCrossRefGoogle Scholar
  55. 55.
    Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E. and Chan, D. C. (2003) Mitofusins Mfn1 and Mfn2, coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200.PubMedCrossRefGoogle Scholar
  56. 56.
    Santel, A., Frank, S., Gaume, B., Herrler, M., Youle, R. J., and Fuller, M. T. (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763–2774.PubMedCrossRefGoogle Scholar
  57. 57.
    Fritz, S., Rapaport, D., Klanner, E., Neupert, W., and Westermann, B. (2001) Connection of the mitochondrial outer and inner, membranes by Fzol is critical for organellar fusion. J. Cell Biol. 152, 682–692.CrossRefGoogle Scholar
  58. 58.
    Rojo, M., Legros, F., Chateau, D., and Lombes, A. (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell. Sci. 115, 1663–1674.PubMedGoogle Scholar
  59. 59.
    Olichon, A., Emorine, L. J., Descoins, E., Pelloquin, L., Brichese, L., Gas, N., et al. (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171–176.PubMedCrossRefGoogle Scholar
  60. 60.
    Herlan, M., Vogel, F., Bornhovd, C., Neupert W., and Reichert, A. S. (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278, 27781–27788.PubMedCrossRefGoogle Scholar
  61. 61.
    McQuibban, G. A., Saurya, S., and Freeman, M. (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541.PubMedCrossRefGoogle Scholar
  62. 62.
    Brodin, L., Low, P., and Shupliakov, O. (2000) Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 10, 312–320.PubMedCrossRefGoogle Scholar
  63. 63.
    Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Shupliakov, O., et al. (1999) Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143–154.PubMedCrossRefGoogle Scholar
  64. 64.
    Farsad, K., Ringstad, N., Takei, K., Floyd, S. R., Rose, K., and De Camilli, P. (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions J. Cell Biol. 155, 193–200.PubMedCrossRefGoogle Scholar
  65. 65.
    Hill, E., van Der Kaay, J., Downes, C. P., and Smythe, E. (2001) The role of dynamin and its binding partners in coated pit invagination and scission. J. Cell Biol. 152, 309–323.PubMedCrossRefGoogle Scholar
  66. 66.
    Gad, H., Ringstad, N., Low, P., Kjaerulff, O., Gustafsson, J., Wenk, M., et al. (2000) Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27, 301–312.PubMedCrossRefGoogle Scholar
  67. 67.
    Yoon, Y., Pitts, K. R., Dahan, S., and McNiven, M. A. (1998) A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J. Cell Biol. 140, 779–793.PubMedCrossRefGoogle Scholar
  68. 68.
    Koch, A., Thiemann, M., Grabenabauer, M., Yoon, Y., McNiven, M. A., and Schrader, M. (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605.PubMedCrossRefGoogle Scholar
  69. 69.
    Fekkes, P., Shepard, K. A., and Yaffe, M. P. (2000) Gap3 p, an outer membrane protein required for fission of mitochondrial tubules. J. Cell Biol. 151, 333–340.PubMedCrossRefGoogle Scholar
  70. 70.
    Mozdy, A. D., McCaffery, J. M., and Shaw, J. M. (2000) Dnm 1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fislp. J. Cell Biol. 151, 367–380.PubMedCrossRefGoogle Scholar
  71. 71.
    Cerveny, K. L., McCaffery, J. M., and Jensen, R. E. (2001) Division of mitochondria requires a novel DNM1-interacting protein, Net2p. Mol. Biol. Cell 12, 309–321.PubMedGoogle Scholar
  72. 72.
    Tieu, Q. and Nunnari, J. (2000) Mdv1p Is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to triggner mitochondrial division. J. Cell Biol. 151, 353–366.PubMedCrossRefGoogle Scholar
  73. 73.
    Tieu, Q., Qkreglak, V., Naylor, K., and Nunnari, J. (2002) The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J. Cell Biol. 158, 445–452.PubMedCrossRefGoogle Scholar
  74. 74.
    James, D. I., Parone, P. A., Mattenberger, Y., and Martinou, J. C. (2003) hFis1, a novel component or the mammalian mitochondrial fission machinery. J. Biol. Chem. 278, 36373–36379.PubMedCrossRefGoogle Scholar
  75. 75.
    Yoon, Y., Krueger, E. W., Oswald, B. J. and McNiven, M. A. (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell. Biol. 23, 5409–5420.PubMedCrossRefGoogle Scholar
  76. 76.
    Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., et al. (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525.PubMedCrossRefGoogle Scholar
  77. 77.
    Karbowski, M., Lee, Y. J., Gaume, B., Jeong, S. Y., Frank, S., Nechushtan, A., et al. (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931–938.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Rochester School of Medicine and DentistryRochester
  2. 2.Department of Pharmacology and PhysiologyUniversity of Rochester School of Medicine and DentistryRochester

Personalised recommendations