Cell Biochemistry and Biophysics

, Volume 41, Issue 1, pp 113–137 | Cite as

N-linked carbohydrates act as lumenal maturation and quality control protein tags

  • Robert Daniels
  • Sherri Svedine
  • Daniel N. Hebert
Review Article

Abstract

Protein modifications such as ubiquitination and phosphorylation commonly serve as sorting tags that control the trafficking and stability of a protein within the cytosol. In recent years, N-linked glycans have emerged as key protein modifications for eukaryotic secretory proteins. These modifications support the recruitment of molecular chaperones and sorting receptors, which recognize specific glycoforms. Therefore, glycanases and carbohydrate transferases work in concert with lectin chaperones and receptors to aid in the maturation and quality control of glycoproteins.

Index Entries

Secretory pathway calnexin calreticulin glycosylation ERAD endoplasmic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellgaard, L., Molinari, M., and Helenius, A. (1999) Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888.PubMedGoogle Scholar
  2. 2.
    Arvan, P., Zhao, X., Ramos-Castaneda, J., and Chang, A. (2002) Secretory pathway quality control operating in the Golgi, plasmalemmal, and endosomal systems. Traffic 3, 771–780.PubMedGoogle Scholar
  3. 3.
    Taylor, ME, and Drickamer, K. (2003) Introduction to Glycobiology, Oxford University Press, Oxford.Google Scholar
  4. 4.
    Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A., and Dwek, R. A. (2001) Glycosylation and the immune system. Science 291, 2370–2376.PubMedGoogle Scholar
  5. 5.
    Dennis, J. W. (1991) N-linked oligosaccharide processing and tumor cell biology. Sem. Cancer Biol. 2, 411–420.Google Scholar
  6. 6.
    Kawamura, N., Ookawara, T., Suzuki, K., Konishi, K., Mino, M., and Taniguchi, N. (1992) Increased glycated Cu,Zn-superoxide dismutase levels in erythrocytes of patients with insulin-dependent diabetis mellitus. J. Clin. Endocrin. Met. 74, 1352–1354.Google Scholar
  7. 7.
    Dennis, R. W., Granovsky, M., and Warren, C. E. (1999) Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34.PubMedGoogle Scholar
  8. 8.
    Ulsemer, P., Lanza, F., Baas, M. J., et L. (2000) Role of the leucine-rich domain of platelet GPIb-alpha in correct post-translational processing—the Nancy I Bernard-Soulier mutation expressed on CHO cells. Thromb. Haemost. 84, 104–111.PubMedGoogle Scholar
  9. 9.
    Van Geet, C., Jaeken, J., Freson, K., et al. (2001) Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications. J. Inherit. Metab. Dis. 24, 477–492.PubMedGoogle Scholar
  10. 10.
    Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science 291, 2364–2369.PubMedGoogle Scholar
  11. 11.
    Silberstein, S. and Gilmore, R. (1996) Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J. 10, 849–858.PubMedGoogle Scholar
  12. 12.
    Nilsson, I., Kelleher, D. J., Miao, Y., et al. (2003) Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J. Cell Biol. 161, 715–725.PubMedGoogle Scholar
  13. 13.
    Trombetta, E. S., Simons, J. F., and Helenius, A. (1996) Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound non-catalytic HDEL-containing subunit. J. Biol. Chem. 271, 27,509–27,516.Google Scholar
  14. 14.
    Ou, W.-J., Cameron, P. H., Thomas, D. Y., and Bergeron, J. J. M. (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364, 771–776.PubMedGoogle Scholar
  15. 15.
    Hammond, C. and Helenius, A. (1993) A chaperone with a sweet tooth. Curr. Biol. 3, 884–885.PubMedGoogle Scholar
  16. 16.
    Hebert, D. N., Foellmer, B., and Helenius, A. (1995) Glucose trimming and reglucosylation determines glycoprotein association with calnexin. Cell 81, 425–433.PubMedGoogle Scholar
  17. 17.
    Peterson, J. R., Ora, A., Nguyen Van., P., and Helenius, A. (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol. Biol. Cell 6, 1173–1184.PubMedGoogle Scholar
  18. 18.
    Chen, W., Helenius, J., Braakman, I., and Helenius, A. (1995) Cotranslational folding and calnexin binding of influenza hemagglutinin in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 92, 6229–6233.PubMedGoogle Scholar
  19. 19.
    Caramelo, J. J., Castro, O. A., Alonso, L. G., de Prat-Gay, G., and Parodi, A. J. (2003) UDP-Glc: glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc. Natl. Acad. Acad. Sci. USA 100, 86–91.Google Scholar
  20. 20.
    Sousa, M. and Parodi, A. J. (1995) The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc: glycoprotein glucosyltransferase. EMBO J. 14, 4196–4203.PubMedGoogle Scholar
  21. 21.
    Trombetta, E.S. and Helenius, A. (2000) Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J Cell. Biol. 148, 1123–1129.PubMedGoogle Scholar
  22. 22.
    Gonzalez, D. S., Karaveg, K., Vandershall-Nairn, A. S., Lal, A., and Moreman, K. (1999) Identification, expression and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in the mammalian Asn-linked oligosaccharide biosynthesis. J. Biol. Chem. 274, 21,375–21,386.CrossRefGoogle Scholar
  23. 23.
    Weng, S. and Spiro, R. (1996) Endoplasmic reticulum kifunensine-resistant alpha-mannosidase is enzymatically and immunologically related to the cytosolic alpha-mannosidase. Arch. Biochem. Biophys. 325, 113–123.PubMedGoogle Scholar
  24. 24.
    Jakob, C. A., Burda, P., Roth, J., and Aebi, M. (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol. 142, 1223–1233.PubMedGoogle Scholar
  25. 25.
    Liu, Y., Choudhury, P., Cabral, C. M., and Sifers, R. N. (1999) Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J. Biol. Chem. 274, 5861–5867.PubMedGoogle Scholar
  26. 26.
    Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.PubMedGoogle Scholar
  27. 27.
    Rabouille, C. and Spiro, R. (1992) Nonselective utilization of the endomannosidase pathway for processing glycoproteins by human hepatoma (HepG2) cells. J. Biol. Chem. 267, 11,573–11,578.Google Scholar
  28. 28.
    Parlati, F., Dignard, D., Bergeron, J. J., and Thomas, D. Y. (1995) The calnexin homologue cnx1+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. EMBO J. 14, 3064–3072.PubMedGoogle Scholar
  29. 29.
    Parlati, F., Dominguez, M., Bergeron, J. J. M., and Thomas, D. Y. (1995) Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270, 244–253.PubMedGoogle Scholar
  30. 30.
    Jannatipour, M. and Rokeach, L. A. (1995) The schitzosaccharomyces pombe homologue of the chaperone calnexin is essential for viability. J. Biol. Chem. 270, 4845–4853.PubMedGoogle Scholar
  31. 31.
    Mesaeli, N., Nakamura, K., Zvaritch, E., et al. (1999) Calreticulin is essential for cardiac development. J. Cell Biol. 144, 857–868.PubMedGoogle Scholar
  32. 32.
    Schrag, J. D., Bergeron, J. J. M., Li, Y., et al. (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell 8, 633–644.PubMedGoogle Scholar
  33. 33.
    Kapoor, M., Srinivas, H., Kandiah, E., et al. (2003) Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. J. Biol. Chem. 278, 6194–6200.PubMedGoogle Scholar
  34. 34.
    Saito, Y., Ihara, Y., Leach, M. R., Cohen-Doyle, M. F., and Williams, D. B. (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J. 18, 6718–6729.PubMedGoogle Scholar
  35. 35.
    Leach, M. R., Cohen-Doyle, M. F., Thomas, D. Y., and Williams, D. B. (2002) Localization of the lectin, ERp57 binding and polypeptide binding sites of calnexin and calreticulin. J. Biol. Chem. 277, 29,686–29,697.Google Scholar
  36. 36.
    Ellgaard, L., Riek, R., Herrmann, T., Guntert, P., Braun, D., Helenius, A., and Wuthrich, K. (2001) NMR structure of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 98, 3133–3138.PubMedGoogle Scholar
  37. 37.
    Frickel, E. M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K., and Ellgaard, L. (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 99, 1954–1959.PubMedGoogle Scholar
  38. 38.
    Hammond, C., Braakman, I., and Helenius, A. (1994) Role of N-linked oligosaccharides, glucose trimming and calnexin during glycoprotein folding in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 91, 913–917.PubMedGoogle Scholar
  39. 39.
    Hebert, D. N., Zhang, J.-X., Chen, W., Foellmer, B., and Helenius, A. (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J. Cell Biol. 139, 613–623.PubMedGoogle Scholar
  40. 40.
    Molinari, M. and Helenius, A. (2000) Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288, 331–333.PubMedGoogle Scholar
  41. 41.
    Daniels, R., Kurowski, B., Johnson, A. E., and Hebert, D. N. (2003) N-linked glycan direct the cotranslational maturation of influenza hemagglutinin. Mol. Cell 11, 79–90.PubMedGoogle Scholar
  42. 42.
    Bukau, B. and Horwich, A. L. (1998) The hsp70 and hsp60 chaperone machines. Cell 92, 351–366.PubMedGoogle Scholar
  43. 43.
    Hebert, D. N., Foellmer, B., and Helenius, A. (1996) Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 15, 2961–2968.PubMedGoogle Scholar
  44. 44.
    Vassilakos, A., Cohen-Doyle, M. F., Peterson, P. A., Jackson, M. R., and Williams, D. B. (1996) The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 15, 1495–1506.PubMedGoogle Scholar
  45. 45.
    Ora, A. and Helenius, A. (1995) Calnexin fails to associate with substrate proteins in glucosidase-deficient cell lines. J. Biol. Chem. 270, 26,060–26,062.Google Scholar
  46. 46.
    Labriola, C., Cazzulo, J. J., and Parodi, A. J. (1995) Retention of glucose units added by the UDP-Glc:glycoprotein glucosyltrans-ferase delayes exit of glycoporteins from the endoplasmic reticulum. J. Cell Biol. 130, 771–779.PubMedGoogle Scholar
  47. 47.
    Oliver, J. D., van, der, Wal, E. J., Bulleid, N. J., and High, S. (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275, 86–88.PubMedGoogle Scholar
  48. 48.
    Oliver, J. D., Roderick, H. L., Llewellyn, D. H., and High, S. (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell 10, 2573–2582.PubMedGoogle Scholar
  49. 49.
    Van der Wal, F. J., Oliver, J. D., and High, S. (1998) The transient association of ERp57 with N-glycosylated proteins is regulated by glucose trimming. Eur. J. Biochem. 256, 51–59.PubMedGoogle Scholar
  50. 50.
    Freedman, R. B., Klappa, P., and Ruddock, L. W. (2002) Protein disulfide isomerase exploit synergy between catalytic and specific binding domains. EMBO Rep. 3, 136–140.PubMedGoogle Scholar
  51. 51.
    Srivastava, S. P., Fuchs, J. A., and Holtzman, J. L. (1993) The reported cDNA sequence for phospholipase C alpha encodes protein disulfide isomerase, isozyme Q-2 and not phospholipase C. Biochem. Biophys. Res. Commun. 193, 971–978.PubMedGoogle Scholar
  52. 52.
    Bourdi, M., Demady, D., Martin, J. L., et al. (1995) cDNA cloning and baculovirus expression of the human liver endoplasmic retculum p58: characterization as a protein disulfide isomerase isoform, but not as a protease or a carnitine acyltransferase. Arch. Biochem. Biophys. 323, 397–403.PubMedGoogle Scholar
  53. 53.
    Hirano, N., Shibasaki, F., Sakai, R., et al. (1995) Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Eur. J. Biochem. 234, 336–342.PubMedGoogle Scholar
  54. 54.
    Bonfils, C. (1998) Purification of a 58-kDa protein (ER58) from monkey liver microsomes and comparison with protein-disulfide isomerase. Eur. J. Biochem. 254, 420–427.PubMedGoogle Scholar
  55. 55.
    Zapun, A., Darby, N. J., Tessier, D. C., Michalak, M., Bergeron, J. J. M., and Thomas, D. Y. (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J. Biol. Chem. 273, 6009–6012.PubMedGoogle Scholar
  56. 56.
    Antoniou, A. N., Ford, S., Alphey, M., Osborne, A., Elliot, T., and Powis, S. J. (2002) The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules. EMBO J. 21, 2655–2663.PubMedGoogle Scholar
  57. 57.
    Helenius, A. (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell 5, 253–265.PubMedGoogle Scholar
  58. 58.
    Parodi, A. J. (1999) Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim. Biophys. Acta 1426, 287–295.PubMedGoogle Scholar
  59. 59.
    Guerin, M. and Parodi, A. J. (2003) The UDP-glucose:glycoprotein glucosyltransferase is organized in at least two tightly bound domains from yeast to mammals. J. Biol. Chem. 278, 20,540–20,546.Google Scholar
  60. 60.
    Trombetta, S. E. and Parodi, A. J. (1992) Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase. J. Biol. Chem. 267, 9236–9240.PubMedGoogle Scholar
  61. 61.
    Ritter, C. and Helenius, A. (2000) Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase. Nature Struct. Biol. 7, 278–280.PubMedGoogle Scholar
  62. 62.
    Taylor, S. C., Thibault, P., Tessier, D. C. M., Bergeron, J. J. M., and Thomas, D. Y. (2003) Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferse. EMBO Rep. 4, 405–411.PubMedGoogle Scholar
  63. 63.
    Fanchiotti, S., Fernandez, F., D'Alessio, C., and Parodi, A. J. (1998) The UDP-glc:glycoprotein glucosyltransferase is essential for Schizosaccharomyces pombe viability under conditions of extreme endoplasmic retculum stress. J. Cell Biol. 143, 625–635.PubMedGoogle Scholar
  64. 64.
    Fernandez, F. S., Trombetta, S. E., Hellman, U., and Parodi, A. J. (1994) Purification to homogeneity of UDP-glucose:glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme from Saccharomyces cerevisae. J. Biol. Chem. 269, 30,701–30,706.Google Scholar
  65. 65.
    Zhang, J.-X., Braakman, I., Matlack, K. E. S., and Helenius, A. (1997) Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol. Biol. Cell 8, 1943–1954.PubMedGoogle Scholar
  66. 66.
    Elliott, JG, Oliver, JD, and High, S (1997) The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J Biol. Chem. 272, 13849–13855.PubMedGoogle Scholar
  67. 67.
    Kang, S. J. and Cresswell, P. (2002) Calnexin, calreticulin and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J. Biol. Chem. 277, 44,838–44,844.Google Scholar
  68. 68.
    Rothman, J. E. (1987) Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack. Cell 50, 521–522.PubMedGoogle Scholar
  69. 69.
    Hurtley, S. M. and Helenius, A. (1989) Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5, 277–307.PubMedGoogle Scholar
  70. 70.
    Nishimura, N., Bannykh, S., Slabough, S., et al. (1999) A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J. Biol. Chem. 274, 15,937–15,946.Google Scholar
  71. 71.
    Ma, Y. and Hendershot, L. M. (2001) The unfolded tale of the unfolded protein response. Cell 107, 827–830.PubMedGoogle Scholar
  72. 72.
    Schrag, J. D., Propopio, D. O., Cygler, M., Thomas, D. Y., and Bergeron, J. J. M. (2003) Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem. Sci. 28, 49–57.PubMedGoogle Scholar
  73. 73.
    Hauri, H. P., Appenzeller, C., Kuhn, F., and Nufer, O. (2000) Lectins and traffic in the secretory pathway. FEBS Lett. 476, 32,539–32,542.Google Scholar
  74. 74.
    Moussali, M., Pipe, S. W., Hauri, H. P., et al (1999) Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53 mediated ER to Golgi trafficking of coagulation factors V and VIII. J. Biol. Chem. 274, 32,539–32,542.Google Scholar
  75. 75.
    Appenzeller, C., Andersson, H., Kappeler, F., and Hauri, H.-P. (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nature Cell Biol 1, 330–334.PubMedGoogle Scholar
  76. 76.
    Schubert, U., Anton, L. C., Gibbs, J., Norbury, C. C., Yewdell, J. W., and Bennink, J. R. (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774.PubMedGoogle Scholar
  77. 77.
    Kopito, R. R. (1997) ER quality control:the cytoplasmic connection. Cell 88, 427–430.PubMedGoogle Scholar
  78. 78.
    Bonifacino, J. S. and Weissman, A. M. (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 14, 19–57.PubMedGoogle Scholar
  79. 79.
    Pelham, H. R. B. (1989) Control of protein exit from the endoplasmic reticulum. Annu. Rev. Cell Biol. 5, 1–23.PubMedGoogle Scholar
  80. 80.
    Jackson, M. R., Nilsson, T., and Peterson, P. A. (1993) Retrieval of transmembrane proteins to the endoplasmic reticulum. J. Cell Biol. 121, 317–333.PubMedGoogle Scholar
  81. 81.
    Rajagopalan, S., Xu, Y., and Brenner, M. B. (1994) Retention of unassembled components of integral membrane proteins by calnexin. Science 263, 387–390.PubMedGoogle Scholar
  82. 82.
    Sitia, R., Neuberger, M., Alberini, C., et al. (1990) Developmental regulation of IgM secretion: the role of the carboxy-terminal cysteine. Cell 60, 781–790.PubMedGoogle Scholar
  83. 83.
    Su, K., Stoller, T., Rocco, J., Zemsky, J., and Green, R. (1993) Pre-Golgi degradation of yeast prepro-a-factor in a mammalian cell. J. Biol. Chem. 268, 14,301–14,309.Google Scholar
  84. 84.
    Yang, M., Omura, S., Bonifacino, J. S., and Weissman, A. M. (1998) Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination and proteasome-dependent removal from ER membranes. J. Exp. Med. 187, 835–846.PubMedGoogle Scholar
  85. 85.
    Cabral, C. M., Liu, Y., and Sifers, R. N. (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem. Sci. 26, 619–624.PubMedGoogle Scholar
  86. 86.
    Fewell, S. W., Travers, K. J., Weissman, J. S., and Brodsky, J. L. (2001) The action of molecular chaperones in the early secretory pathway. Annu. Rev. Genet. 35, 149–191.PubMedGoogle Scholar
  87. 87.
    McCracken, A. A. and Brodsky, J. L. (1996) Assembly of ER-associated protein degradation in vitro: dependence of cytosol, calnexin and ATP. J. Cell Biol. 132, 291–298.PubMedGoogle Scholar
  88. 88.
    Wang, J. and White, A. L. (2000) Role of calnexin, calreticulin, and endoplasmic reticulum mannosidase I in apolipoprotein (a) intracellular targeting. Biochemistry 39, 8993–9000.PubMedGoogle Scholar
  89. 89.
    Wilson, C. M., Farmery, M. R., and Bulleid, N. J. (2000) Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain. J. Biol. Chem. 275, 21224–21,232.PubMedGoogle Scholar
  90. 90.
    Chung, D. H., Ohashi, K., Watanabe, M., Miyasaka, N., and Hirosawa, S. (2000) Mannose trimming targets mutant alpha 2 plasmin inhibitor for degradation by the proteasome. J. Biol. Chem. 275, 4981–4987.PubMedGoogle Scholar
  91. 91.
    Cabral, C. M., Choudhury, P., Liu, Y., and Sifers, R. N. (2000) Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J. Biol. Chem. 275, 25,015–25,022.Google Scholar
  92. 92.
    Wilson, R., Allen, A. J., Oliver, J., Brookman, J. L., High, S., and Bulleid, N. J. (1995) The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biochem. J. 307, 679–687.PubMedGoogle Scholar
  93. 93.
    Keller, S. H., Lindstrom, J., and Taylor, P. (1998) Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasomal degradation of the a-subunit of the nicotinic acetylcholine receptor. J. Biol. Chem. 273, 17,064–17,072.Google Scholar
  94. 94.
    Oda, Y., Hosokawa, N., Wada, I., and Nagata, K. (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299, 1394–1397.PubMedGoogle Scholar
  95. 95.
    Molinari, M., Calanca, V., Galli, C., Lucca, P., and Pagnetti, P. (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299, 1397–1400.PubMedGoogle Scholar
  96. 96.
    Nakatsukasa, K., Nishikawa, S.-I., Hosokawa, N., Nagata, K., and Endo, T. (2001) Mnl1p, an alpha-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J. Biol. Chem. 276, 8635–8638.PubMedGoogle Scholar
  97. 97.
    Jakob, C. A., Bodmer, D., Spirig, U., et al. (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2, 423–430.PubMedGoogle Scholar
  98. 98.
    Hosokawa, N., Wada, I., Hasegawa, K., et al. (2001) A novel ER a-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2, 415–422.PubMedGoogle Scholar
  99. 99.
    Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., and Mori, K. (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265–271.PubMedGoogle Scholar
  100. 100.
    Moore, S. E. H. and Spiro, R. G. (1993) Inhibition of glucose trimming by castanospermine results in rapid degradation of unsassembled major hitsocompatibility complex Class I molecules. J. Biol. Chem. 268, 3809–3812.PubMedGoogle Scholar
  101. 101.
    Ayalon-Soffer, M., Shenkman, M., and Lederkremer, G. Z. (1999) Differential roles of mannose and glucose trimming in the ER degradation of asialoglycoprotein receptor subunits J. Cell Sci. 112, 3309–3318.PubMedGoogle Scholar
  102. 102.
    Fagioli, C. and Sitia, R. (2001) Glycoprotein quality control in the endoplasmic reticulum. J. Biol. Chem. 276, 12,885–12,892.Google Scholar
  103. 103.
    de Virgilio, M., Weninger, H., and Ivessa, N. E. (1998) Ubiquitin is required for the retrotranslocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J. Biol. Chem. 273, 9734–9743.PubMedGoogle Scholar
  104. 104.
    Bebok, Z., Mazzochi, C., King, S. A., Hong, J. S., and Sorscher, E. J. (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J. Biol. Chem. 273, 29,873–29,878.Google Scholar
  105. 105.
    Petaja-Repo, U. E., Hogue, M., Laperriere, A., Bhalla, S., Walker, P., and Bouvier, M. (2001) Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome, J. Biol. Chem. 276, 4416–4423.PubMedGoogle Scholar
  106. 106.
    Wiertz, E. J., Tortorella, D., Bogyo, M., et al. (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438.PubMedGoogle Scholar
  107. 107.
    Wesche, J., Rapak, A., and Olsnes, S. (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 274, 34,443–34,449.Google Scholar
  108. 108.
    Fisher, E. A. and Ginsberg, H. N. (2002) Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J. Biol. Chem. 277, 17,377–17,380.Google Scholar
  109. 109.
    Hamman, B. D., Chen, J. C., Johnson, E. E., and Johnson, A. E. (1997) The aqueous pore through the translocon has a diameter of 40–60 Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544.PubMedGoogle Scholar
  110. 110.
    Hamman, B. D., Hendershot, L. M., and Johnson, A. E. (1998) BiP maintains the permeability barrier of the ER membrane by dealing the lumenal end of the translocon before and early in translocation. Cell 92, 747–758.PubMedGoogle Scholar
  111. 111.
    Kowarik, M., Kung, S., Martoglio, B., and Helenius, A. (2002) Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10, 769–778.PubMedGoogle Scholar
  112. 112.
    Tsai, B., Ye, Y., and Rapoport, T. A. (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell. Biol. 3, 246–255.Google Scholar
  113. 113.
    Jarosch, E., Geiss-Friedlander, R., Meusser, B., Walter, J., and Sommer, T. (2002) Protein dislocation from the endoplasmic reticulum—pulling out the suspect. Traffic 3, 530–536.PubMedGoogle Scholar
  114. 114.
    Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D., and Warren, G. (2000) A complex of mammalian ufd1 and np14 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192.PubMedGoogle Scholar
  115. 115.
    Rape, M., Hoppe, T., Gorr, I., Kalocay, M., Richly, H., and Jentsch, S. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677.PubMedGoogle Scholar
  116. 116.
    Verma, R., Chen, S., Feldman, R., et al. (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439.PubMedGoogle Scholar
  117. 117.
    Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N., and Bar-Nun, S. (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell Biol. 22, 626–634.PubMedGoogle Scholar
  118. 118.
    Ye, Y., Meyer, H. H., and Rapoport, T. A. (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656.PubMedGoogle Scholar
  119. 119.
    Braun, S., Matuschewski, K., Rape, M., Thomas, S., and Jentsch, S. (2002) Role of the ubiquitin-selective CDC48 (UFD1/NPL4) chaperone segregase in ERAD of OLE1 and other substrates. EMBO J. 21, 615–621.PubMedGoogle Scholar
  120. 120.
    Jarosch, E., Taxis, C., Volkwein, C., et al. (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139.PubMedGoogle Scholar
  121. 121.
    Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380.PubMedGoogle Scholar
  122. 122.
    Voges, D., Zwickl, P., and Baumeister, W. (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068.PubMedGoogle Scholar
  123. 123.
    Mayer, T. U., Braun, T., and Jentsch, S. (1998) Role of the proteasome in membrane extraction of a short-lived ER-membrane protein. EMBO J. 17, 3251–3257.PubMedGoogle Scholar
  124. 124.
    Bays, N. W., Wilhovsky, S. K., Goradia, A., Hodgkiss-Harlow, K., and Hampton, R. Y. (2001) HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 12, 4114–4128.PubMedGoogle Scholar
  125. 125.
    Qu, D. F., Teckman, J. H., Omura, S., and Perlmutter, D. H. (1996) Degradation of a mutant secretory protein, a1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271, 22,791–22,795.Google Scholar
  126. 126.
    Thrower, J., Hoffman, L., Rchsteiner, M., and Pickart, C. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102.PubMedGoogle Scholar
  127. 127.
    Joazeiro, C. and Weissman, A. (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552.PubMedGoogle Scholar
  128. 128.
    Weissman, A (2001) Themes and variations on ubiquitylation. Nature Rev. Mol. Cell. Biol. 2, 169–178.Google Scholar
  129. 129.
    Biederer, T., Volkwein, C., and Sommer, T. (1997) Role of Cuelp in ubiquitination and degradation at the ER surface. Science 278, 1806–1809.PubMedGoogle Scholar
  130. 130.
    Tiwari, S. and Weissman, A. (2001) Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. J. Biol. Chem. 276, 16,193–16,200.Google Scholar
  131. 131.
    Fang, S., Ferrone, M., Yang, C., Jensen, J. P., Tiwari, S., and Weissman, A. M. (2001) The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 98, 14,422–14,427.Google Scholar
  132. 132.
    Yoshida, Y., Chiba, T., Tokunaga, F., et al. (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442.PubMedGoogle Scholar
  133. 133.
    Suzuki, T., Park, H., and Lennarz, W. J. (2002) Cytoplasmic peptide: N-glycanase (PNGase) in eukaryotic cells: occurence, primary structure, and potential functions. FASEB J. 16, 635–641.PubMedGoogle Scholar
  134. 134.
    Hirsch, C., Blom, D., and Ploegh, H. L. (2003) A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 22, 1036–1046.PubMedGoogle Scholar
  135. 135.
    Wiertz, E. J. H. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J., and Ploegh, H. L. (1996) The human cytomegalovirus US11 gene product dislocated MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779.PubMedGoogle Scholar
  136. 136.
    Huppa, J. B. and Ploegh, H. L. (1997) The in vitro translation and assembly of a complete T cell receptor-CD3 complex. J. Exp. Med. 186, 393–403.PubMedGoogle Scholar
  137. 137.
    Halaban, R., Chang, E., Zhang, Y., et al. (1997) Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl. Acad. Sci. USA 94, 6210–6215.PubMedGoogle Scholar
  138. 138.
    Suzuki, T., Park, H., Hollingsworth, N. M., Sternglanz, R., and Lennarz, W. J. (2000) PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J. Cell Biol. 149, 1039–1051.PubMedGoogle Scholar
  139. 139.
    Suzuki, T., Park, H., Kwofie, M. A., and Lennarz, W. J. (2001) Rad23 provides a link between the Png1 deglycosylating enzyme and the 26S proteasome in yeast. J. Biol. Chem. 276, 21,601–21,607.Google Scholar
  140. 140.
    Suzuki, T. and Lennarz, W. J. (2003) Hypothesis: a glycoprotein-degradation complex formed by protein-protein interaction involves cytoplasmic peptide: N-glycanase. Biochem. Biophys. Res. Commun. 302, 1–5.PubMedGoogle Scholar
  141. 141.
    Palmer, A., Rivett, A. I., Thomson, S., et al. (1996) Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem. J. 316, 401–407.PubMedGoogle Scholar
  142. 142.
    Enenkel, C., Lehmann, A., and Kloetzel, P.-M. (1998) Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J. 17, 6144–6154.PubMedGoogle Scholar
  143. 143.
    Hirsch, C. and Ploegh, H. L. (2000) Intracellular targeting of the proteasome. Trends Cell Biol. 10, 268–271.PubMedGoogle Scholar
  144. 144.
    Chapman, R., Sidrauski, C., and Walter, P. (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485.PubMedGoogle Scholar
  145. 145.
    Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S., and Walter, P. (2000) Functional and genomic analyses reveal an essential coordination between unfolded protein response and ER-associated degradation. Cell 101, 249–258.PubMedGoogle Scholar
  146. 146.
    Harding, H. P., Calfon, M., Urano, F., and Ron, D. (2002) Transcriptional and translational control in mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18, 575–599.PubMedGoogle Scholar
  147. 147.
    Harding, H. P., Zhang, Y., and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274.PubMedGoogle Scholar
  148. 148.
    Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.PubMedGoogle Scholar
  149. 149.
    Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. J. Biol. Chem. 273, 33,741–33,749.Google Scholar
  150. 150.
    Brown, M. S., Ye, J., Rawson, R. B., and Goldstein, J. L. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398.PubMedGoogle Scholar
  151. 151.
    Ye, J., Rawson, R. B., Komuru, R., et al. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364.PubMedGoogle Scholar
  152. 152.
    Shen, X., Ellis, R. E., Lee, K., et al. (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893–903.PubMedGoogle Scholar
  153. 153.
    Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891.PubMedGoogle Scholar
  154. 154.
    Casagrande, R., Stern, P., Diehn, M., et al. (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell 5, 729–735.PubMedGoogle Scholar
  155. 155.
    Ng, D. T. W., Spear, E. D., and Walter, P. (2000) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell Biol. 150, 77–88.PubMedGoogle Scholar
  156. 156.
    Friedlander, R., Jarosch, E., Urban, J., Volkwein, C., and Sommer, T. (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. NatNature Cell Biol. 2, 379–384.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Robert Daniels
    • 1
  • Sherri Svedine
    • 1
  • Daniel N. Hebert
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular BiologyUniversity of MassachusettsAmherst

Personalised recommendations