Cell Biochemistry and Biophysics

, Volume 40, Supplement 3, pp 27–48 | Cite as

New strategies in immune tolerance induction

  • Soji F. Oluwole
  • Olakunle O. Oluwole
  • Ayotunde O. Adeyeri
  • Hector A. DePaz
Transplantation Immunology And Improvements In Clinical Protocols


Induction of tolerance in clinical organ transplantation that will obviate the use of chronic immunosuppression and preserve host immune response to other antigens remains the goal of transplant research. The thymus plays a critical role in the ability of the immune system to discriminate between self- and nonself-antigens or harmful and harmless alloantigens. We now know that multiple factors determine how the immune system responds to a self-antigen or foreign antigen. These determinants include developmental stage of the host, stage of T-cell maturity, site of antigen encounter, type and maturity of antigen-presenting cells, and presence and type of costimulatory molecules. Our understanding of the mechanisms of T-cell interactions with peptide/major histocompatibility complex in peripheral lymphoid organs has led to experiments that translate into peripheral T-cell tolerance. The induction of high-avidity peripheral alloreactive T cells in the early phase of organ transplantation makes it difficult to achieve long-term alloantigen-specific tolerance without the use of transient perioperative immunosuppression. Therefore, protocols that induce robust tolerance in rodent and nonhuman primate models involve the use of donor antigen combined with a short course of perioperative immunosuppression. These studies suggest that the underlying mechanisms of peripheral tolerance include deletion, anergy, immune deviation, and regulatory T cells. This review focuses on recent advances in tolerance induction in experimental animal models and discusses their relevance to the development of protocols for the induction and maintenance of clinical transplant tolerance.

Index Entries

Thymus tolerance regulatory T cells mixed chimerism costimulatory blockade dendritic cells allorecognition allopeptides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibson, T. and Medawar, P. B. (1945) The fate of skin homografts in man. J. Anat. 77, 299–314.Google Scholar
  2. 2.
    Billingham, R. E., Brent, L., and Medawar, P. B. (1953) Actively acquired tolerance of foreign cells. Nature 172, 603–606.PubMedCrossRefGoogle Scholar
  3. 3.
    Scollay, R. G., Butcher, E. C., and Weissman, I. L. (1980) Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur. J. Immunol. 10, 210–218.PubMedCrossRefGoogle Scholar
  4. 4.
    Hogquist, K. A., Gavin, M. A., and Bevan, M. J. (1993) Positive selection of CD8+ T cells binding peptides in fetal thymic organ culture. J. Exp. Med. 177, 1469–1473.PubMedCrossRefGoogle Scholar
  5. 5.
    Walunas, T. L., Sperling, A. I., Khattri, R., Thompson, C. B., and Bluestone, J. A. (1996) CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J. Immunol. 156, 1006–1013.PubMedGoogle Scholar
  6. 6.
    Brocker, T., Riedinger, M., and Karjalainen, K. (1997) Targeted expression of major histocompatibility complex [MHC] class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J. Exp. Med. 185, 541–550.PubMedCrossRefGoogle Scholar
  7. 7.
    Page, D. M. (1999) Thymic selection and autoreactivity are regulated by multiple coreceptors involved in T cell activation. J. Immunol. 163, 3577–3581.PubMedGoogle Scholar
  8. 8.
    Grewal, I. S. and Flavell, R. A. (1998) CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135.PubMedCrossRefGoogle Scholar
  9. 9.
    Owen, R. D. (1945) Immunogenic consequences of vascular anastomoses between bovine twins. Science 102, 400–401.PubMedCrossRefGoogle Scholar
  10. 10.
    Hasek, M. and Hraba, T. (1955) Immunological effects of experimental embryonal parabiosis. Nature 175, 764–765.PubMedCrossRefGoogle Scholar
  11. 11.
    Burret, F. M. and Fenner, F. (1949) The production of antibodies, MacMillan, Melbourne, Australia, pp. 102–105.Google Scholar
  12. 12.
    Burnet, F. M. (1962) Role of the thymus and related organs in immunology. BMJ 2, 807–811.PubMedGoogle Scholar
  13. 13.
    Monaco, A. P., Wood, M. L., and Russell, P. S. (1966) Studies on heterologous anti-lymphocyte serum in mice. III Immunologic tolerance and chimerism produced across the H-2 locus with adult thymectomy and anti-lymphocyte serum. Ann. N. Y. Acad. Sci. 129, 190–209.CrossRefGoogle Scholar
  14. 14.
    Lance, E. M. and Medawar, P. (1969) Quantitative studies on tissue transplantation immunity. IX Induction of tolerance with anti-lymphocyte serum. Proc. R. Soc. Lond. B. Biol. Sci. 173, 447–473.PubMedGoogle Scholar
  15. 15.
    Wood, M. L., Monaco, A. P., Gozzo, J. J., and Liegois, A. (1971) Use of homozygous allogeneic bone marrow for induction of tolerance with antilymphocyte serum: dose and timing. Transplant Proc. 3, 676–379.PubMedGoogle Scholar
  16. 16.
    Pinto, M., Brent, L., and Thomas, A. V. (1974) Specific unresponsiveness to skin allografts in mice. 3. Synergistic effect of tissue extracts, Bordetella pertussis, and antilymphocyte serum. Transplant 17, 472–486.CrossRefGoogle Scholar
  17. 17.
    Brent, L. and Opara, S. C. (1979) Specific unresponsiveness to skin allografts in mice. V. Synergy between donor tissue extract, procarbazine hydrochloride, and antilymphocyte serum in creating a long-lasting unresponsiveness mediated by suppressor T cells. Transplantation 27, 120–126.PubMedCrossRefGoogle Scholar
  18. 18.
    Slavin, S., Strober, S., Fuks, Z., and Kaplan, H. S. (1977) Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogenic bone marrow and skin grafts. J. Exp. Med. 146, 34–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Oluwole, S. F., Hardy, M. H., Fawwaz, R., Todd, G., Nowygrod, R., and Reemtsma, K. (1979) Selective lymphoid irradiation. II. Comparison with total-body irradiation on cardiac allograft survival in rats. Transplant 28, 492–495.Google Scholar
  20. 20.
    Homan, W. P., Williams, K. A., Millard, P. R., and Morris, P.J. (1981) Prolongation of renal allograft survival in the rat by pretreatment with donor antigen and cyclosporin A. Transplantation 31, 423–427.PubMedCrossRefGoogle Scholar
  21. 21.
    Vojtiskova, M. and Lengevova, A. (1968) Thymus-induced tolerance to cellular alloantigens. Transplantation 6, 13–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Ohzato, H. and Monaco, A. P. (1992) Induction of specific unresponsiveness (tolerance) to skin allografts by intrathymic donor-specific splenocyte injection in antilymphocyte serum-treated mice. Transplantation 54, 1090–1095.PubMedCrossRefGoogle Scholar
  23. 23.
    Posselt, A. M., Barker, C. F., Tomaszewski, J. E., Markmann, J. F., Choti, M. A., and Naji, A. (1990) Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 249, 1293–1295.PubMedCrossRefGoogle Scholar
  24. 24.
    James, T., Jin, M. X., Chowdhury, N. C., and Oluwole, S. F. (1993) Tolerance induction to rat islet allografts by intrathymic inoculation of donor spleen cells. Transplantation 56, 1148–1152.PubMedCrossRefGoogle Scholar
  25. 25.
    Oluwole, S. F., Jin, M. X., Chowdhury, N. C., James, T., and Fawwaz, R. A. (1993) Induction of specific unresponsiveness to rat islet allografts by intrathymic UVB donor spleen cells. Transplantation 56, 1142–1147.PubMedCrossRefGoogle Scholar
  26. 26.
    Oluwole, S. F., Chowdhury, N. C., and Fawwaz, R.A. (1993) Induction of donor specific unresponsiveness to rat cardiac allografts by intrathymic injection of UVB irradiated donor spleen cells. Transplantation 55, 1389–1395.PubMedCrossRefGoogle Scholar
  27. 27.
    Oluwole, S. F., Chowdhury, N., and Fawwaz, R. A. (1993) Induction of donor-specific unresponsiveness to rat cardiac allografts by pretreatment with intrathymic donor MHC class I antigens. Transplantation 55, 1396–1402.PubMedCrossRefGoogle Scholar
  28. 28.
    Chowdhury, N. C., Fawwaz, R. A., and Oluwole, S. F. (1993) Induction of donor-specific tolerance to rat cardiac and small bowel allografts by intrathymic inoculation of donor T-cells. J. Surg. Res. 84, 368–374.CrossRefGoogle Scholar
  29. 29.
    Remuzzi, G., Rossini, M., Imberti, O., and Perico, N. (1991) Kidney graft survival in rats without immunosuppression after intrathymic glomerular transplantation. Lancet 337, 750–752.PubMedCrossRefGoogle Scholar
  30. 30.
    Staples, P. J., Gary, I., and Waksman, B. H. (1966) Role of the thymus in tolerance: tolerance to bovine gamma globulin after direct injection of antigen into the shielded thymus of irradiated rats. J. Exp. Med. 124, 127–129.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohajekwe, O. A., Chowdhury, N. C., Fiedor, P. S., Hardy, M. A., and Oluwole, S. F. (1995) Transplantation tolerance to rat cardiac and islet allografts by post transplant intrathymic inoculation of soluble alloantigens. Transplantation 60, 1139–1143.PubMedCrossRefGoogle Scholar
  32. 32.
    Oluwole, S. F., Jin, M. X., Chowdhury, N. C., and Ohajekwe, O. A. (1994) Effectiveness of intrathymic inoculation of soluble antigens in the induction of specific unresponsiveness to rat islet allograft without transient recipient immunosuppression. Transplantation 58, 1077–1081.PubMedCrossRefGoogle Scholar
  33. 33.
    Chowdhury, N. C., Jin, M. X., Hardy, M. A., and Oluwole, S. F. (1995) Donor specific unresponsiveness to murine cardiac allografts induced by intrathymic inoculation of soluble alloantigens is dependent on alternate pathway of antigen presentation. J. Surg. Res. 59, 91–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Oluwole, S. F., Chowdhury, N. C., Jin, M. X., and Hardy, M. A. (1993) Induction of transplantation tolerance to rat cardiac allografts by intrathymic inoculation of allogeneic soluble peptides. Transplantation 56, 1523–1527.PubMedCrossRefGoogle Scholar
  35. 35.
    Sayegh, M., Perico, N., Imberti, O., Hancock, W., Carpenter, C., and Remuzzi, G. (1993) Thymic recognition of class II MHC allopeptides induces donor-specific unresponsiveness to renal allografts. Transplantation 56, 461–465.PubMedCrossRefGoogle Scholar
  36. 36.
    Chowdhury, N. C., Murphy, B., Sayegh, M. H., Jin, M. X., Roy, D. K., Hardy, M. A., et al. (1996) Acquired systemic tolerance to rat cardiac allografts induced by intrathymic inoculation of synthetic polymorphic MHC class I allopeptides. Transplantation 62, 1878–1882.PubMedCrossRefGoogle Scholar
  37. 37.
    Mhoyan, A., Cramer, D. V., Baquerizo, A., and Shirwan, H. (1997) Induction of allograft nonresponsiveness after intrathymic inoculation with donor class I allopeptides. I. Correlation of graft survival with antidonor IgG antibody subclasses. Transplantation 64, 1665–1670.PubMedCrossRefGoogle Scholar
  38. 38.
    Chowdhury, N. C., Saborio, D. V., Garrovillo, M., Chandraker, A., Magee, C. C., Waaga, A. M., et al. (1998) Comparative studies of specific acquired systemic tolerance induced by intrathymic inoculation of a single synthetic Wistar-Furth allo-MHC class I (RT1-Au) peptide or WAG (RT1u)-derived class I peptide. Transplantation 66, 1059–1066.PubMedCrossRefGoogle Scholar
  39. 39.
    Oluwole, S. F., Chowdhury, N. C., Ingram, M., Garrovillo, M., Jin, M. X., and Agrawal, S. (1999) Mechanism of acquired thymic tolerance induced by a single MHC-class I peptide with the dominant epitope: differential analysis of regulatory cytokines in the lymphoid and intragraft compartments. Transplantation 68, 418–429.PubMedCrossRefGoogle Scholar
  40. 40.
    Knechtle, S. F., Wang, J., Jiao, S., Geissler, E. K., Sumimoto, R., and Wolff, J. (1994) Induction of specific tolerance by intrathymic injection of recipient muscle cells transfected with donor class I major histocompatibility complex. Transplantation 57, 990–996.PubMedCrossRefGoogle Scholar
  41. 41.
    Walter, L., Tiemann, C., Heine, L., and Gunther, E. (1995). Genomic organization and sequence of the major histocompatibility complex Ig gene RT1.Au. Immunogenetics 41, 332.PubMedCrossRefGoogle Scholar
  42. 42.
    Joly, E., Clarkson, C., Howard, J. C., and Butcher, G. W. (1995) Isolation of a functional cDNA encoding the RT1.Au MHC Class I heavy chain by a novel PCR-based method. Immunogenetics 41, 326–328.PubMedCrossRefGoogle Scholar
  43. 43.
    Shirwan, H., Wu, G. D., Barwarj, L., Liu, A., and Cramer, D. V. (1997) Induction of allograft non-responsiveness after intrathymic inoculation with donor class I allopeptides. II Evidence for persistent chronic rejection despite high levels of donor microchimerism. Transplantation 64, 1671–1676.PubMedCrossRefGoogle Scholar
  44. 44.
    Sayegh, M. H., Perico, N., Gallon, L., Imberti, O., Hancock, W. W., Remuzzi, G., et al. (1994) Mechanism of acquired thymic unresponsiveness to renal allografts. Transplantation 58, 125–132.PubMedGoogle Scholar
  45. 45.
    Ali, A., Garrovillo, M., Jin, M. X., Hardy, M. A., and Oluwole, S. F. (2000). Major histocompatibility complex class I peptide-pulsed host dendritic cells induce antigen-specific acquired thymic tolerance to islet cells. Transplantation 69, 221–226.PubMedCrossRefGoogle Scholar
  46. 46.
    Garrovillo, M., Ali, A., and Oluwole, S. F. (1999) Indirect allorecognition in acquired thymic tolerance: induction of donor-specific tolerance to rat cardiac allografts by allopeptide-pulsed host dendritic cells. Transplantation 68, 1827–1833.PubMedCrossRefGoogle Scholar
  47. 47.
    Oluwole, O. O., DePaz, H. A., Gopinathan, R., Ali, A., Garrovillo, M., Jin, M. X., et al. (2001) Indirect allorecognition in acquired thymic tolerance: induction of donor-specific permanent acceptance of rat islets by adoptive transfer of allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes 50, 1546–1552.PubMedCrossRefGoogle Scholar
  48. 48.
    Slavin, S., Strober, S., Fuks, Z., and Kaplan, H. S. (1977) Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long term survival of allogeneic bone marrow and skin grafts. J. Exp. Med. 146, 34–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Chowdhury, N. C., Jin, M. X., and Oluwole, S. F. (1993) Prevention of graft-versus-host disease in rat small bowel transplantation by recipient pretreatment with UV-B modulated bone marrow cells. Transplantation 55, 1229–1235.PubMedCrossRefGoogle Scholar
  50. 50.
    Ferrara, J. L. M. and Deeg, H. J. (1991) Graft versus-host disease. N. Engl. J. Med. 324, 667–674.PubMedCrossRefGoogle Scholar
  51. 51.
    Kerman, N. A., Collins, N. H., Juliano, L., Cartagena, T., Dupont, B., and O’Reilly, R. J. (1986). Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-vs-host disease. Blood 68, 770–773.Google Scholar
  52. 52.
    Oluwole, S. F., Engelstad, K., and James, T. (1993) Prevention of graft-versus-host disease and bone marrow rejection: kinetics of induction of tolerance by UVB modulation of accessory cells and T cells in the bone marrow inoculum. Blood 81, 1658–1665.PubMedGoogle Scholar
  53. 53.
    Reisner, Y., Kapoor, N., Kirkpatrick, D., Pollack, M. S., Cunningham-Rundless, S., Dupont, B., et al. (1983) Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 61, 341–348.PubMedGoogle Scholar
  54. 54.
    Gale, R. P. and Reisner, Y. (1986) Graft rejection and graft-versus-host-disease: mirror images. Lancet 1, 1468–1470.PubMedGoogle Scholar
  55. 55.
    Brouha, P. C. R. and Ildstad, S. T. (2001) Mixed allogeneic chimerism: past, present and prospects for the future. Transplantation 72, S36-S42.PubMedGoogle Scholar
  56. 56.
    Ildstad, S. T. and Sachs, D. H. (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168–170.PubMedCrossRefGoogle Scholar
  57. 57.
    Sachs, D. H. (2000) Mixed chimerism as an approach to transplantation tolerance. Clin. Immunol. 95, S63-S68.PubMedCrossRefGoogle Scholar
  58. 58.
    Wekerle, T. and Sykes, M. (2001) Mixed chimerism and transplantation tolerance. Annu. Rev. Med. 52, 353–370.PubMedCrossRefGoogle Scholar
  59. 59.
    Exner, B. G., Colson, Y. L., Li, H., and Ildstad, S. T. (1997) In vivo depletion of host CD4+ and CD8+ cells permits engraftment of bone marrow stem cells and tolerance induction with minimal conditioning. Surgery 122, 221–227.PubMedCrossRefGoogle Scholar
  60. 60.
    Sykes, M., Szot, G. L., Swenson, K., and Pearson, D. A. (1997) Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat. Med. 3, 683–687.CrossRefGoogle Scholar
  61. 61.
    Kurtz, J., Ito, H., Wekerle, T., Shaffer, J., and Sykes, M. (2001) Mechanisms involved in the establishment of tolerance through co-stimulatory blockade and BMT: lack of requirement for CD40L-mediated signaling for tolerance or deletion of donor-reactive CD4+ cells. Am. J. Transplant. 1, 339–349.PubMedCrossRefGoogle Scholar
  62. 62.
    Schwarze, M. L., Menard, M. T., Fuchimoto, Y., Huang, C. A., Houser, S., Mawulawde, D., Allison, K. S., Sachs, D. H., and Madsen, J. C. (2000). Mixed hematopoietic chimerism induces long-term tolerance to cardiac allografts in miniature swine. Ann. Thorac. Surg. 70, 131–139.PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas, J. M., Neville, D. M., Contreras, J. L., Eckhoff, D. C., Meng, G., Lobashevsky, A. L., et al. (1997). Preclinical studies of allograft tolerance in rhesus monkeys: a novel anti-CD3-immunotoxin given peritransplant with donor bone marrow induces operational tolerance to kidney allografts. Transplantation 64, 124–135.PubMedCrossRefGoogle Scholar
  64. 64.
    Kawai, T., Poncelet, A. F., Sachs, D. H., Mauiyyedi, S., Boskovic, S., Wee, S. L., et al. (1999) Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft survival. Transplantation 68, 1767–1775.PubMedCrossRefGoogle Scholar
  65. 65.
    Kawai, T., Abrahamian, G., Sogawa, H., Wee, S., Boskovic, S., Andrew, D., et al. (2001). Costimulatory blockade for induction of mixed chimerism and renal allograft tolerance in non-human primates. Transplant Proc. 33, 221–222.PubMedCrossRefGoogle Scholar
  66. 66.
    Kawai, T., Cosimi, A. B., Wee, S. L., Honser, S., Andrews, D., Sogawa, H., et al. (2000) Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation 73, 1757–1764.CrossRefGoogle Scholar
  67. 67.
    Spitzer, T. R., Delmonico, F., Tolkoff-Rubin, N., McAfee, S., Sackstein, R., Saidman, S., et al. (1999) Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 68, 480–484.PubMedCrossRefGoogle Scholar
  68. 68.
    Laman, J.D., Claassen, E., and Noelle, R. J. (1996) Functions of CD40 and its ligand, gp39 (CD40L). Crit. Rev. Immunol. 16, 59–108.PubMedGoogle Scholar
  69. 69.
    Perez, V., van Parijs, L., Biuckians, A., Zhang, X. X., Strom, T. B., and Abbas, A. K. (1997) Induction of peripheral tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–418.PubMedCrossRefGoogle Scholar
  70. 70.
    Jonker, M., Ossevoort, M. A., and Vierboan, M. (2002) Blocking the CD80 and CD86 co-stimulation molecules: lessons to be learned from animal models. Transplantation 73, S23-S26.PubMedCrossRefGoogle Scholar
  71. 71.
    Sayegh, M. H. and Turka, L. A. (1995) T cell costimulatory pathways: promising novel targets for immunosuppression and tolerance induction. J. Am. Soc. Nephrol. 6, 1143–1150.PubMedGoogle Scholar
  72. 72.
    Larsen, C. P., Elwood, E. T., Alexander, D. Z., Ritchie, S. C., Hendrix, R., Tucher-Burden, C., et al. (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438.PubMedCrossRefGoogle Scholar
  73. 73.
    Yamada, A. and Sayegh, M. H. (2002) The CD154-CD40 co-stimulatory pathway in transplantation. Transplant 73, S36-S39.CrossRefGoogle Scholar
  74. 74.
    Rossini, A. A., Greiner, D. L., and Mordes, J. P. (1999) Induction of immunological tolerance for transplantation. Physiol. Rev. 79, 99–141.PubMedGoogle Scholar
  75. 75.
    Markees, T. G., Serreze, D. V., Pillips, N. E., Sorli, C. H., Gordon, E. J., Shultz, L. D., et al. (1999) NOD mice have a generalized defect in their response to transplantation tolerance induction. Diabetes 48, 967–974.PubMedCrossRefGoogle Scholar
  76. 76.
    Pardoll, D. M. (2002) Spinning molecular immunology into successful immunotherapy. Nat. Rev. 2, 227–238.CrossRefGoogle Scholar
  77. 77.
    Ozkaynak, E., Gao, W., Shemmeri, N., Wang, C., Gutierrez-Ramos, J. C., Amaral, J., et al. (2001) Importance of ICOS-B7RP-1 co-stimulation in acute and chronic rejection. Nat. Immunol. 2, 591–596.PubMedCrossRefGoogle Scholar
  78. 78.
    Tamada, K., Tamura, H., Flies, D., Fu, Y. X., Ceils, E., Pease, L. R., et al. (2002) Blockade of LIGHT/LTB and CD40 signaling induces allospecific T cell anergy, preventing GVHD. J. Clin. Invest. 109, 549–557.PubMedCrossRefGoogle Scholar
  79. 79.
    Ye, Q., Fraser, C. C., Gao, W., Wang, L., Busfield, S. J., Wang, C., et al. (2002) Modulation of LIGHT-HVEM co-stimulation prolongs cardiac allograft survival. J. Exp. Med. 195, 795–800.PubMedCrossRefGoogle Scholar
  80. 80.
    Ossevoort, M. A., Ringers, J., Kuhn, E. M., Boon, L., Lorre, K., van den Hout, Y., et al. (1999) Prevention of renal allograft rejection in primates by blocking the B7/CD28 pathway. Transplantation 68, 1010–1018.PubMedCrossRefGoogle Scholar
  81. 81.
    Kirk, A. D., Harlan, D. M., Armstrong, N. N., Davis, T. A., Dong, Y., Gray, G. S., et al. (1997) CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl. Acad. Sci. U S A 94, 8789–8794.PubMedCrossRefGoogle Scholar
  82. 82.
    Kirk, A. D., Burkly, L. C., Batty, D. S., Baumgartner, R. E., Berning, J. D., Buchanan, K., et al. (1999) Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in non-human primates. Nat. Med. 5, 686–693.PubMedCrossRefGoogle Scholar
  83. 83.
    Kenyon, N. S., Fernandez, L. A., Lehmann, R., Masetti, M., Ranuncoli, A., Chatzipetraou, M., et al. (1999) Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154. Diabetes 48, 1473–1481.PubMedCrossRefGoogle Scholar
  84. 84.
    Kenyon, N. S., Chatzipetrou, M., Masetti, M., Ranuncoli, A., Oliveira, M., Wagner, J. L., et al. (1999) Long-term survival and function of intrahepatic islet allografts in Rhesus monkeys treated with humanized anti-CD154. Proc. Natl. Acad. Sci. USA 96, 8132–8137.PubMedCrossRefGoogle Scholar
  85. 85.
    Blair, P. J., Riley, J. L., Harlan, D. M., Abe, R., Tadaki, D. K., Hoffmann, S. C., et al. (2000) CD40 ligand (CD154) triggers a short-term CD4+ T cell activation response that results in secetion of immunodulatory cytokines and apoptosis. J. Exp. Med. 191, 651–660.PubMedCrossRefGoogle Scholar
  86. 86.
    Steinman, R. M., Inaba, K., Turley, S., Pierre, P., and Mellman, I. (1999) Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum. Immunol. 60, 562–567.PubMedCrossRefGoogle Scholar
  87. 87.
    Coates, P. T. H. and Thomson, A. W. (2002) Dendritic cells, tolerance induction and transplant outcome. Am. J. Transplant. 2, 299–307.PubMedCrossRefGoogle Scholar
  88. 88.
    Khoury, S. J., Gallon, L., Chen, W., Betres, K., Russell, M. E., Hancock, W. W., et al. (1995) Mechanisms of acquired thymic tolerance in experimental autoimmune encephalomyelitis: thymic dendritic-enriched cells induce specific peripheral T cell unresponsiveness in vivo. J. Exp. Med. 182, 357–366.PubMedCrossRefGoogle Scholar
  89. 89.
    Matzinger, P. and Guerder, S. (1989) Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338, 74–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Thomson, A. W. and Lu, L. (1999) Dendritic cells as regulators of immune reactivity: implications for transplantation. Transplantation 68, 1–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Reid, S. D., Penna, G., and Adorini, L. (2000) The control of T cell responses by dendritic cell subsets. Curr. Opin. Immunol. 12, 114–121.PubMedCrossRefGoogle Scholar
  92. 92.
    Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A. H. (2000) Induction of interleukin 10-producing, non-proliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222.PubMedCrossRefGoogle Scholar
  93. 93.
    Clare-Salzler, M. J., Brooks, J., Chai, A., Van Herle, K., and Anderson, C. (1992) Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J. Clin. Invest. 90, 741–748.PubMedCrossRefGoogle Scholar
  94. 94.
    Feili-Hariri, M., Dong, X., Alber, S. M., Watkins, S. C., Salter, R. D., and Morel, P. A. (1999) Immunotherapy of NOD mice with bone marrow derived dendritic cells. Diabetes 48, 2300–2308.PubMedCrossRefGoogle Scholar
  95. 95.
    Gandy, K. L., Domeri, J., Aguila, H., and Weissman, I. L. (1999) CD8+TCR+ and CD8+TCR cells in whole bone marrow facilitate the engraftment of hemopoietic stem cells across allogeneic barriers. Immunity 11, 579–590.PubMedCrossRefGoogle Scholar
  96. 96.
    Lu, L., McCaslin, D., Starzl, T. E., and Thomson, A. W. (1995) Bone marrow derived dendritic cell progenitors (NLDC-145+, MHC Class II+, B7-1dim, B7-2) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 60, 1539–1545.PubMedCrossRefGoogle Scholar
  97. 97.
    Lutz, M. B., Kukutsch, N. A., Menges, M., Rossner, S., and Schuler, G. (2000) Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur. J. Immunol. 30, 1048–1052.PubMedCrossRefGoogle Scholar
  98. 98.
    Fairchild, P. J. and Waldmann, H. (2000) Dendritic cells and prospects for transplantation tolerance. Curr. Opin. Immunol. 12, 528–535.PubMedCrossRefGoogle Scholar
  99. 99.
    Garrovillo, M., Ali, A., DePaz, H. A., Gopinathan, R., Oluwole, O. O., Hardy, M. A., et al. (2001) Induction of transplant tolerance with immunodominant allopeptide-pulsed host lymphoid and myeloid dendritic cells. Am. J. Transplantation 1, 129–137.CrossRefGoogle Scholar
  100. 100.
    Ali, A., Garrovillo, M., Oluwole, O. O., DePaz, H. A., Gopinathan, R., Engelstad, K., et al. (2001) Mechanisms of acquired thymic tolerance: induction of transplant tolerance by adoptive transfer of in vivo alloMHC peptide activated T cells. Transplantation 71, 1442–1448.PubMedCrossRefGoogle Scholar
  101. 101.
    Lutz, M. B., Suri, R. M., Niimi, M., Ogilvie, A. L., Kukutsch, N. A., Rossner, S., Schuler, G., and Austyn, J. M. (2000) Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur. J. Immunol. 30, 1813–1822.PubMedCrossRefGoogle Scholar
  102. 102.
    Fu, F., Li, Y., Qian, S., Lu, L., Chambers, F., Starzl, T. E., Fung, J. J., and Thomson, A. W. (1996) Co-stimulatory molecule-deficient dedritic cell progenitors (MHC class II+, B7-1dim, B7-1-) prolong cardiac allograft survival in non-immunosuppressed recipients. Transplantation 62, 659–665.PubMedCrossRefGoogle Scholar
  103. 103.
    Lu, L., Li, W., Fu, F., Chambers, F. G., Qian, S., Fung, J. J., and Thompson, A. W. (1997) Blockade of the CD40-C40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 64, 1808–1815.PubMedCrossRefGoogle Scholar
  104. 104.
    Rastellini, C., Lu, L., Ricordi, C., Starzl, T. E., Rao, A. S., and Thomson, A. W. (1995) Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation 60, 1366–1370.PubMedGoogle Scholar
  105. 105.
    Hayamizu, K., Huie, P., Sibley, R. K., and Strober, S. (1998) Monocyte-derived dendritic cell precursors facilitate tolerance to heart allografts after total lymphoid irradiation. Transplantation 66, 1285–1291.PubMedCrossRefGoogle Scholar
  106. 106.
    DePaz, H. A., Oluwole, O. O., Hardy, M. A., and Oluwole, S. F. (2001) Induction of transplant tolerance by adoptive transfer of immature myeloid dendritic cells. Surg. Forum 52, 335–337.Google Scholar
  107. 107.
    DePaz, H. A., Oluwole, O. O., Adeyeri, A. O., Witkowski, P., Jin, M. X., Hardy, M. A., et al. (2003) Immature rat myeloid dendritic cells generated in low-dose GM-CSF prolongs donor-specific rat cardiac allograft survival. Transplantation 75, 521–528.PubMedCrossRefGoogle Scholar
  108. 108.
    Duncan, S. R., Capetanakis, N. G., Lawson, B. R., and Theofilopoulos, A. N. (2002) Thymic dendritic cells traffic to thymi of allogeneic recipients and polong graft survival. J. Clin. Invest. 109, 755–764.PubMedCrossRefGoogle Scholar
  109. 109.
    Fanger, N. A., Maliszewski, C. R., Schooley, K., and Griffith, T. S. (1999). Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J. Exp. Med. 190, 1155–1165.PubMedCrossRefGoogle Scholar
  110. 110.
    Lu, L., Qian, S., Hershberger, P. A., Rudent, W. A., Lynch, D. H., and Thomson, A. W. (1997) Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation. J. Immunol., 158, 5476–5684.Google Scholar
  111. 111.
    Huang, F. G., Platt, N., Wykes, M., Major, J. R., Powell, T. J., Jenkins, C. D., et al. (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–493.PubMedCrossRefGoogle Scholar
  112. 112.
    Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C., and Bhardwaj, N. (2001) Antigen-specific inhibition of effector T cell junction in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238.PubMedCrossRefGoogle Scholar
  113. 113.
    Oluwole, O. O., DePaz, H. A., Reisner, Y., Jin, M. X., Hardy, M. A., and Oluwole, S. F. (2002) Induction of donor specific tolerance to skin allografts by recipient modulaion with alloMHC peptide and bone marrow transplantation. Transplantation 74, 314 (Abstract 1271).Google Scholar
  114. 114.
    Gopinathan, R., DePaz, H. A., Oluwole, O. O., Ali, A. O., Garrovillo, M., Engelstad, K., et al. (2001) Role of re-entry of in vivo alloMHC peptide-activated T cells into the adult thymus in acquired systemic tolerance. Transplantation 72, 1533–1541.PubMedCrossRefGoogle Scholar
  115. 115.
    Thornton, A. M. and Shevach, E.,M. (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vivo by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296.PubMedCrossRefGoogle Scholar
  116. 116.
    Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., et al. (2000) Immunologic self-tolerance maintained by CD4+CD25+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–309.PubMedCrossRefGoogle Scholar
  117. 117.
    Sakaguchi, S. (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458.PubMedCrossRefGoogle Scholar
  118. 118.
    Fowell, D. and Mason, D. (1993) Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes: characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med. 177, 627–636.PubMedCrossRefGoogle Scholar
  119. 119.
    Suri-Payer, E., Amar, A. Z., Thorton, A. M., and Shevach, E. M. (1998) CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218.PubMedGoogle Scholar
  120. 120.
    Lepault, F. and Gagnerault, M. C. (2000) Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol. 164, 240–247.PubMedGoogle Scholar
  121. 121.
    Suri-Payer, E., Kehn, P. J., Cheever, A. W., and Shevach, E. M. (1996) Pathogenesis of post-thymectomy autoimmune gastritis: Identification of anti-H/K adenosine triphosphatase reactive T cells. J. Immunol. 157, 1799–1805.PubMedGoogle Scholar
  122. 122.
    Oluwole, O. O., DePaz, H. A., Ali, A. O., Jin, M. X., Hardy, M. A., and Oluwole, S. F. (2001) Role of recent thymic emigrants with regulatory T cell function in the induction of acquired transplant tolerance. Surg. Forum 52, 335–337.Google Scholar
  123. 123.
    Oluwole, O. O., DePaz, H. A., Adeyeri, A., Jin, M. X., Hardy, M. A., and Oluwole, S. F. (2003) Role of CD4+CD25+ regulatory T cells from naive host thymus in the induction of acquired transplant tolerance by immunization with alloMHC peptide-primed syngeneic T cells. Transplantation 75, 1136–1142.PubMedCrossRefGoogle Scholar
  124. 124.
    Davies, J. D., O’Connor, E., Hall, D., Krahl, T., Trotter, J., and Sarvetnick, N. (1999) CD4+CD45RBlow density cells from untreated mice prevent acute allograft rejection. J. Immunol. 163, 5353–5357.PubMedGoogle Scholar
  125. 125.
    Graca, L., Thompson, S., Lin, C., Adams, E., Cobbold, S. P., and Waldmann, H. (2002) Both CD4+CD25+ and CD4+CD25- regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565.PubMedGoogle Scholar
  126. 126.
    Read, S., Malmstrom, V., and Powrie, F. (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD4+CD25+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302.PubMedCrossRefGoogle Scholar
  127. 127.
    Hara, M., Kingsley, C. I., Niimi, M., Read, S., Turvey, S. E., Bushell, A. R., et al. (2001) IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796.PubMedGoogle Scholar
  128. 128.
    Kingsley, C. I., Karim, M., Bushell, A. R., and Wood, K. J. (2002) CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4 and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086.PubMedGoogle Scholar
  129. 129.
    Gregori, S., Casora, M., Amuchastegui, S., Smiroldo, S., Davalli, A. M., and Adorini, L. (2001) Regulatory T cells induced by 1α, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol. 167, 1945–1953.PubMedGoogle Scholar
  130. 130.
    Chen, W., Jin, W., and Wahl, S. M. (1999) Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β production by murine CD4+ T cells. J. Exp. Med. 188, 1849–1857.CrossRefGoogle Scholar
  131. 131.
    Liu, Z., Tugulea, S., Cortesini, R., Lederman, S., and Suciu-Foca, N. (1999) Inhibition of CD40 signaling pathway in antigen presenting cells by T suppressor cells. Hum. Immunol. 60, 568–574PubMedCrossRefGoogle Scholar
  132. 132.
    Thornton, A. M. and Shevach, E. M. (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen non-specific: CD4+CD25+ immunoregulatory T cells. J. Immunol. 164, 183–190.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Soji F. Oluwole
    • 1
  • Olakunle O. Oluwole
    • 1
  • Ayotunde O. Adeyeri
    • 1
  • Hector A. DePaz
    • 1
  1. 1.Department of SurgeryColumbia University, College of Physicians and SurgeonsNew York

Personalised recommendations