Cell Biochemistry and Biophysics

, Volume 40, Supplement 3, pp 159–167 | Cite as

Understanding of basic mechanisms of β-cell function and survival

Prelude to new diabetes therapies
  • Christopher B. Newgard
  • Hans E. Hohmeier
  • Danhong Lu
  • Mette Valentin Jensen
  • Veronique V. Tran
  • Guoxun Chen
  • Shawn Burgess
  • A. Dean Sherry
Pancreatic And Islet Cell Biology


Type 1 and type 2 diabetes are both diseases of insulin insufficiency, although they develop by distinct pathways. The recent surge in the incidence of type 2 diabetes and the chronic ailments confronted by patients with either form of the disease highlight the need for better understanding of β-cell biology. In this review, we present recent work focused on this goal. Our hope is that basic research being conducted in this and other laboratories will ultimately contribute to the development of methods for enhancing β-cell function and survival in the context of both major forms of diabetes. Our strategy for understanding the β-cell involves a multidisciplinary approach in which tools from the traditional fields of biochemistry, enzymology, and physiology are teamed with newer technologies from the fields of molecular biology, gene discovery, cell and developmental biology, and biophysical chemistry. We have focused on two important aspects of β-cell biology in our studies: β-cell function, specifically the metabolic regulatory mechanisms involved in glucose-stimulated insulin secretion, and β-cell resistance to immune attack, with emphasis on resistance to inflammatory cytokines and reactive oxygen species.

Index Entries

Glucose-stimulated insulin secretion β-cells NMR-based metabolic analysis interleukin-1β interferon-γ bcl-2 reactive oxygen species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, T. C., Beltrandel Rio, H., Noel, R. J., Johnson, J. H, and Newgard, C. B. (1994) Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus: enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels. J. Biol. Chem. 269, 21234–21238.PubMedGoogle Scholar
  2. 2.
    Becker, T. C., Noel, R. J., Johnson, J. H., Lynch, R. M., Hirose, H., Tokuyama, Y., et al. (1996) Differential effects of overexpressed glucokinase and hexokinase I in isolated islets: evidence for functional segregation of the high and low Km enzymes. J. Biol. Chem. 271, 390–394.PubMedCrossRefGoogle Scholar
  3. 3.
    Ferber, S., BeltrandelRio, H., Johnson, J. H., Noel, R. J., Cassidy, L. E., Clark, S., et al. (1994) GLUT-2 gene transfer into insulinoma cells confers both low and high affinity glucose-stimulated insulin release: relationship to glucokinase activity. J. Biol. Chem. 269, 11523–11529.PubMedGoogle Scholar
  4. 4.
    Asfari, M., Janjic, D., Meda, P., Li, G., Halban, P. A., and Wolheim, C. B. (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130, 167–178.PubMedCrossRefGoogle Scholar
  5. 5.
    Hohmeier, H. E., Mulder, H., Chen, G., Henkel-Reiger, R., Prentki, M., and Newgard, C. B. (2000) Isolation of INS-a-derived cell lines with robust KATP channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49, 424–430.PubMedCrossRefGoogle Scholar
  6. 6.
    MacDonald, M. J. (1990) Elusive proximal signals of β-cells for insulin secretion. Diabetes 29, 1461–1466.CrossRefGoogle Scholar
  7. 7.
    Newgard, C. B. and Matschinsky, F. M. (2001) Regulation of insulin secretion from the endocrine pancreas, in Handbook of Physiology (Jefferson, J. and Cherrington, A., eds.), Oxford University Press, Oxford, UK.Google Scholar
  8. 8.
    MacDonald, M. J. (1981) High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islets and its inhibition by diazoxide. J. Biol. Chem. 256, 8287–8290.PubMedGoogle Scholar
  9. 9.
    Lu, D., Mulder, H., Zhao, P., Burgess, S. C., Jensen, M. V., Kamzolova, S., et al. (2002) 13C isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion. Proc. Natl. Acad. Sci. U S A 99, 2708–2713.PubMedCrossRefGoogle Scholar
  10. 10.
    MacDonald, M. J. (1982) Evidence for the malate aspartate shuttle in pancreatic islets. Arch. Biochem. Biophys. 213, 643–649.PubMedCrossRefGoogle Scholar
  11. 11.
    Farfari, S., Schulz, V., Corkey, B., and Prentki, M. (2000) Glucose-regulated anaplerosis and cataplerosis in pancreatic β-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 49, 718–726.PubMedCrossRefGoogle Scholar
  12. 12.
    Maechler, P. and Wollheim, C. B. (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402, 685–689.PubMedCrossRefGoogle Scholar
  13. 13.
    MacDonald, M. J. and Fahien, L. A. (2000) Glutamate is not a messenger in insulin secretion. J. Biol. Chem. 275, 34025–34027.PubMedCrossRefGoogle Scholar
  14. 14.
    Mulder, H., Lu, D., Finley, J., An, J., Cohen, J., Antinozzi, P., et al. (2001) Overexpression of a modified human malonyl-Co-A decarboxylase blocks the glucose-regulated increase in malonyl CoA level but has no impact on insulin secretion in INS1-derived (823/13) β-cells. J. Biol. Chem. 276, 6479–6484.PubMedCrossRefGoogle Scholar
  15. 15.
    MacDonald, M. J. (1996) Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets: further implication of cytosolic NADPH in insulin secretion. J. Biol. Chem. 270, 20051–20058.Google Scholar
  16. 16.
    Newgard, C. B. (2002). While tinkering with the β-cell metabolic regulatory mechanisms and new therapeutic strategies. American Diabetes Association Lilly Lecture, 2001. Diabetes 51, 3141–3150.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, G., Hohmeier, H. E., Gasa, R., Tran, V. V., and Newgard, C. B. (2000) Selection of insulinoma cell lines with resistance to interleukin-1β and γ-interferon-induced cytotoxicity. Diabetes 49, 562–570.PubMedCrossRefGoogle Scholar
  18. 18.
    Rabinovitch, A., Suarez-Pinson, W., Strynadka, K., Ju, Q., Edelstein, D., Brownlee, M., et al. (1999) Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects β-cells from cytokine-induced destruction. Diabetes 48, 1223–1229.PubMedCrossRefGoogle Scholar
  19. 19.
    Dupraz, P., Rinsch, C., Pralong, W. F., Rolland, E., Zufferey, R., Trono, D., et al. (1999) Lentivirus-mediated Bcl-2 expression in βTC-tet cells improves resistance to hypoxia and cytokine-induced apoptosis while preserving in vitro and in vivo control of insulin secretion. Gene Therapy 6, 1160–1169.PubMedCrossRefGoogle Scholar
  20. 20.
    Iwahashi, H., Hanafusa, T., Eguchi, Y., Nakajima, H., Miyagawa, J., Itoh, N., et al. (1996) Cytokine-induced apoptotic cell death in a mouse pancreatic β-cell line: inhibition by Bcl-2. Diabetologia 39, 530–536.PubMedGoogle Scholar
  21. 21.
    Tran, V. V., Chen, G., Newgard, C. B., and Hohmeier, H. E. (2003) Discrete and complementary mechanisms of protection of β-cells against cytokine-induced and oxidative damage achieved by bcl-2 overexpression and a cytokine selection strategy. Diabetes 52, 1423–1432.PubMedCrossRefGoogle Scholar
  22. 22.
    Mandrup-Poulsen, T. (1996) The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 39, 1005–1029.PubMedGoogle Scholar
  23. 23.
    Rabinovitch, A. (1993) An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Rev. 1, 215–240.Google Scholar
  24. 24.
    Corbett, J. A. and McDaniel, M. L. (1992) Does nitric oxide mediate autoimmune destruction of β-cells? Possible therapeutic interventions in IDDM. Diabetes 41, 897–903.PubMedCrossRefGoogle Scholar
  25. 25.
    Eizirik, D. L., Flodstrom, M., Karlsen, A. E., and Welsh, N. (1996) The harmony of spheres: inducible nitric oxide synthase and related genes in pancreatic β-cells. Diabetologia 39, 875–890.PubMedGoogle Scholar
  26. 26.
    Schindler, C. and Darnell, J. E. (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Ann. Rev. Biochem. 64, 621–651.PubMedCrossRefGoogle Scholar
  27. 27.
    Leaman, D. W., Leung, S., Li, X., and Stark, G. R. (1996) Regulation of STAT-dependent pathways by growth factors and cytokines. FASEB J. 10, 1578–1588.PubMedGoogle Scholar
  28. 28.
    Boehm, U., Klamp, T., Groot, M., and Howard, J. C. (1997) Cellular responses to interferon-γ. Ann. Rev. Immunol. 15, 749–795.CrossRefGoogle Scholar
  29. 29.
    Chen, G., Hohmeier, H. E., and Newgard, C. B. (2001) Expression of the transcription factor STAT-1 alpha in insulinoma cells protects against cytotoxic effects of multiple cytokines. J. Biol. Chem. 276, 766–772.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Christopher B. Newgard
    • 1
  • Hans E. Hohmeier
    • 1
  • Danhong Lu
    • 1
  • Mette Valentin Jensen
    • 1
  • Veronique V. Tran
    • 2
  • Guoxun Chen
    • 2
  • Shawn Burgess
    • 2
  • A. Dean Sherry
    • 2
  1. 1.Sarah W. Stedman Nutrition and Metabolism Center, and Departments of Pharmacology and Cancer Biology, Medicine, and BiochemistryDuke University Medical CenterDurham
  2. 2.Departments of Radiology, Biochemistry, and Biomedical EngineeringUniversity of Texas Southwestern Medical CenterDallas

Personalised recommendations