Advertisement

Cell Biochemistry and Biophysics

, Volume 37, Issue 2, pp 111–139 | Cite as

The dance of actin and myosin

A structural and spectroscopic perspective
Review Article

Abstract

Actin and myosin interact in a cyclic series of steps linked to the hydrolysis of ATP that are representative of an ancient and widespread molecular mechanism. Spectroscopic findings are related to the analysis of the actin and myosin structures and results from kinetics, fibers, single molecules, electron microscopy, genetics, and a variety of other biophysical and biochemical studies on actin and myosin to provide an overview of the steps in this molecular process. The synthesis of the key findings from these fields reveals a highly efficient engine that amplifies subtle changes in the active site into unsurpassed molecular displacements. Recent developments in resonance energy-transfer spectroscopy and X-ray crystallography are enabling a detailed elucidation of the stages of a large power stroke that concurs with evidences from diverse lines of structural and kinetic inquiry. A complete image of actin and myosin motility appears to include twists, tilts, steps, and dynamics from both partners that could be described as a molecular dance.

Index Entries

Actomyosin muscle cytoskeleton FRET lanthanides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vale, R. D. and Milligan, R. A. (2000) The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95.PubMedGoogle Scholar
  2. 2.
    Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J., and Vale, R. D. (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555.PubMedGoogle Scholar
  3. 3.
    Kull, F. J., Vale, R. D., and Fletterick, R. J. (1998) The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J. Muscle Res. Cell Motil. 19, 877–886.PubMedGoogle Scholar
  4. 4.
    Kinoshita, K., Sadanami, K., Kidera, A., and Go, N. (1999) Structural motif of phosphatebinding site common to various protein superfamilies: all-against-all structural comparison of protein-mononucleotide complexes. Protein Eng. 12, 11–14.PubMedGoogle Scholar
  5. 5.
    Sprang, S. R. (1997) G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678.PubMedGoogle Scholar
  6. 6.
    Rees, D. C. and Howard, J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559–566.PubMedGoogle Scholar
  7. 7.
    Patel, S. S. and Picha, K. M. (2000) Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697.PubMedGoogle Scholar
  8. 8.
    Noji, H., Amano, T. and Yoshida, M. (1996) Molecular switch of F0F1-ATP synthase, G-protein, and other ATP-driven enzymes. J. Bioenerg. Biomembr. 28, 451–457.PubMedGoogle Scholar
  9. 9.
    Rayment, I., Smith, C., and Yount, R. G. (1996) The active site of myosin. Annu. Rev. Physiol. 58, 671–702.PubMedGoogle Scholar
  10. 10.
    Geeves, M. A. and Holmes, K. C. (1999) Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728.PubMedGoogle Scholar
  11. 11.
    Kabsch, W. and Holmes, K. C. (1995) The actin fold, FASEB J. 9, 167–174.PubMedGoogle Scholar
  12. 12.
    Flaherty, K. M., McKay, D. B., Kabsch, W., and Holmes, K. C. (1991) Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. USA 88, 5041–5045.PubMedGoogle Scholar
  13. 13.
    van den Ent, F., Amos, L. A., and Löwe, J. (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44.PubMedGoogle Scholar
  14. 14.
    Löwe, J., Cordell S. C., and van den Ent, F. (2001) Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. J. Mol. Biol. 306, 25–35.PubMedGoogle Scholar
  15. 15.
    Lockhart, A. and Kendrick-Jones, J. (1998) Nucleotide-dependent interaction of the N-terminal domain of MukB with microtubules. J. Struct. Biol. 124, 303–310.PubMedGoogle Scholar
  16. 16.
    Pollard, T. D. (2001) Genomics, the cytoskeleton and motility. Nature 409, 842–843.PubMedGoogle Scholar
  17. 17.
    Pantaloni, D., Le Clainche, C., and Carlier, M. F. (2001) Mechanism of actin-based motility. Science 292, 1502–1506.PubMedGoogle Scholar
  18. 18.
    Root, D. D. and Wang, K. (1994) Calmodulin-sensitive interaction of human nebulin fragments with actin and myosin. Biochemistry 33, 12,581–12,591.Google Scholar
  19. 19.
    Chalovich, J. M. (1992) Actin mediated regulation of muscle contraction. Pharmacol. Ther. 55, 95–148.PubMedGoogle Scholar
  20. 20.
    Sellers, J. R., Han, Y. J., and Kachar, B. (1991) The use of native thick filaments in in vitro motility assays. J. Cell Sci. 14(Suppl.), 67–71.Google Scholar
  21. 21.
    Sasaki, N., Asukagawa, H., Yasuda, R., Hiratsuka, T., and Sutoh, K. (1999) Deletion of the myopathy loop of Dictyostelium myosin II and its impact on motor functions. J. Biol. Chem. 274, 37,840–37,844.Google Scholar
  22. 22.
    Dalbev, R. E., Wells, J. A., and Yount, R. G. (1983) Trapping of transition metal-nucleotide complexes in myosin subfragment 1 by cross-linking thiols; divalent transition metal probes of the active site. Biochemistry 22, 490–496.Google Scholar
  23. 23.
    Reisler, E. (1982) Sulfhydryl modification and labeling of myosin. Methods Enzymol. 85, 84–93.PubMedGoogle Scholar
  24. 24.
    Joel, P. B., Trybus, K. M., and Sweeney, H. L. (2001) Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J. Biol. Chem. 276, 2998–3003.PubMedGoogle Scholar
  25. 25.
    Sasaki, N., Ohkura, R., and Sutoh, K. (2000) Insertion or deletion of a single residue in the strut sequence of Dictyostelium myosin II abolishes strong binding to actin. J. Biol. Chem. 275, 38,705–38,709.Google Scholar
  26. 26.
    Grammer, J. C., Cremo, C. R., and Yount, R. G. (1988) UV-induced vanadate-dependent modification and cleavage of skeletal myosin subfragment 1 heavy chain. 1. Evidence for active site modification. Biochemistry 27, 8408–8415.PubMedGoogle Scholar
  27. 27.
    Xiao, M., Li, H., Snyder, G. E., Cooke, R., Yount, R. G., and Selvin, P. R. (1998) Conformational changes between the activesite and regulatory light chain of myosin as determined by luminescence resonance energy transfer: the effect of nucleotides and actin. Proc. Natl. Acad. Sci. USA 95, 15,309–15,314.Google Scholar
  28. 28.
    Bertrand, R., Derancourt, J., and Kassab, R. (2000) Fluorescence characterization of structural transitions at the strong actin binding motif in skeletal myosin affinity labeled at cysteine 540 with novel spectroscopic cysteaminyl mixed disulfides. Biochemistry 39, 14,626–14,637.Google Scholar
  29. 29.
    Bertrand, R., Derancourt, J., and Kassab, R. (1995) Production and properties of skeletal myosin subfragment 1 selectively labeled with fluorescein at lysine-553 proximal to the strong actin-binding site. Biochemistry 34, 9500–9507.PubMedGoogle Scholar
  30. 30.
    Lowey, S., Slayter, H. S., Weeds, A. G., and Baker, H. (1969) Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. Mol. Biol. 42, 1–29.PubMedGoogle Scholar
  31. 31.
    Murphy, C. T. and Spudich, J. A. (2000) Variable surface loops and myosin activity: accessories to a motor. J. Muscle Res. Cell Motil. 21, 139–151.PubMedGoogle Scholar
  32. 32.
    Ajtai, K., Peyser, Y. M., Park, S., Burghardt, T. P., and Muhlrad, A. (1999) Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis. Biochemistry 38, 6428–6440.PubMedGoogle Scholar
  33. 33.
    Ajtai, K., Garamszegi, S. P., Park, S., Velazquez Dones, A. L., and Burghardt, T. P. (2001) Structural characterization of beta-cardiac myosin subfragment 1 in solution, Biochemistry 40, 12,078–12,093.Google Scholar
  34. 34.
    Werber, M. M., Peyser, Y. M., and Muhlrad, A. (1987) Modification of myosin subfragment 1 tryptophans by dimenthyl (2-hydroxy-5-nitrobenzyl)sulfonium bromide. Biochemistry 26, 2903–2909.PubMedGoogle Scholar
  35. 35.
    Mornet, D. and Ue, K. (1985) Incorporation of 6-carboxyfluorescein into myosin subfragment 1. Biochemistry 24, 840–846.PubMedGoogle Scholar
  36. 36.
    Ho, G. and Chisholm, R. L. (1997) Substitution mutations in the myosin essential light chain lead to reduced actin-activated ATPase activity despite stoichiometric binding to the heavy chain. J. Biol. Chem. 272, 4522–4527.PubMedGoogle Scholar
  37. 37.
    Adhikari, B., Hideg, K., and Fajer, P. G. (1997) Independent mobility of catalytic and regulatory domains of myosin heads. Proc. Natl. Acad. Sci. USA 94, 9643–9647.PubMedGoogle Scholar
  38. 38.
    Sellers, J. R., Chock, P. B., and Adelstein, R. S. (1983) The apparently negatively cooperative phosphorylation of smooth muscle myosin at low ionic strength is related to its filamentous state. J. Biol. Chem. 258, 14,181–14,188.Google Scholar
  39. 39.
    Wolff-Long, V. L., Tao, T., and Lowey, S. (1995) Proximity relationships between engineered cysteine residues in chicken skeletal myosin regulatory light chain. A resonance energy transfer study. J. Biol. Chem. 270, 31,111–31,118.Google Scholar
  40. 40.
    Cook, R. K., Root, D. D., Miller, C., Reisler, E. and Rubinstein, P. A. (1993) Enhanced stimulation of myosin subfragment 1 ATPase activity by addition of negatively charged residues to the yeast actin N-terminus. J. Biol. Chem. 268, 2410–2415.PubMedGoogle Scholar
  41. 41.
    Razzaq, A., Schmitz, S., Veigel, C., Molloy, J. E., Geeves, M. A., and Sparrow, J. C. (1999) Actin residue glu(93) is identified as an amino acid affecting myosin binding. J. Biol. Chem. 274, 28,321–28,328.Google Scholar
  42. 42.
    Schwyter, D., Phillips, M., and Reisler, E. (1989) Subtilisin-cleaved actin: polymerization and interaction with myosin subfragment 1. Biochemistry 28, 5889–5895.PubMedGoogle Scholar
  43. 43.
    Eli-Berchoer, L., Hegyi, G., Patthy, A., Reisler, E., and Muhlrad, A. (2000) Effect of intramolecular cross-linking between glutamine-41 and lysine-50 on actin structure and function. J. Muscle Res. Cell Motil. 21, 405–414.PubMedGoogle Scholar
  44. 44.
    Takashi, R. (1988) A novel actin label: a fluorescent probe at glutamin-41, and its consequences. Biochemistry 27, 938–943.PubMedGoogle Scholar
  45. 45.
    Miller, L., Phillips, M., and Reisler, E. (1988) Polymerization of actin modified with fluorescein isothiocyanate. Eur. J. Biochem. 174, 23–29.PubMedGoogle Scholar
  46. 46.
    Duke, J., Takashi, R., Use, K., and Morales, M. F. (1976) Reciprocal reactivities of specific thiols when actin binds to myosin. Proc. Natl. Acad. Sci. USA 73, 302–306.PubMedGoogle Scholar
  47. 47.
    Hozumi, T., Miki, M., and Higashi-Fujime, S. (1996) Maleimidobenzoyl actin: its biochemical properties and in vitro motility. J. Biochem. 119, 151–156.PubMedGoogle Scholar
  48. 48.
    Crosbie, R. H., Miller, C., Cheung, P., Goodnight, T., Muhlrad, A., and Reisler, E. (1994) Structural connectivity in actin: effect of C-terminal modifications on the properties of actin. Biophys. J. 67, 1957–1964.PubMedGoogle Scholar
  49. 49.
    O'Donoghue, S. I., Miki, M., and dos Remedios, C. G. (1992) Removing the two C-terminal residues of actin affects the filament structure. Arch. Biochem. Biophys. 293, 110–116.PubMedGoogle Scholar
  50. 50.
    El-Saleh, S. C., Thieret, R., Johnson, P., and Potter, J. D. (1984) Modification of Lys-237 on actin by 2,4-pentanedione. Alteration of the interaction of actin with tropomyosin. J. Biol. Chem. 259, 11,014–11,021.Google Scholar
  51. 51.
    Terashima, M., Yamamori, C., and Shimoyama, M. (1995) ADP-ribosylation of Arg28 and Arg206 on the actin molecule by chicken arginine-specific ADP-ribosyltransferase. Eur. J. Biochem. 231, 242–249.PubMedGoogle Scholar
  52. 52.
    Chantler, P. D. and Gratzer, W. B. (1975) Effects of specific chemical modification of actin. Eur. J. Biochem. 60, 67–72.PubMedGoogle Scholar
  53. 53.
    Prochniewicz, E., Katayama, E., Yanagida, T., and Thomas, D. D. (1993) Cooperativity in Factin: chemical modifications of actin monomers affect the functional interactions of myosin with unmodified monomers in the same actin filament. Biophys. J. 65, 113–123.PubMedGoogle Scholar
  54. 54.
    Sutoh, K. (1982) Identification of myosin-binding sites on the actin sequence. Biochemistry 21, 3654–3661.PubMedGoogle Scholar
  55. 55.
    Bonafé, N., Chaussepied, P., Capony, J. P., Derancourt, J., and Kassab, R. (1993) Photochemical cross-linking of the skeletal myosin head heavy chain to actin subdomain-1 at Arg95 and Arg28. Eur. J. Biochem. 213, 1243–1254.PubMedGoogle Scholar
  56. 56.
    Eligula, L., Chuang, L., Phillips, M. L., Motoki, M., Seguro, K., and Muhlrad, A. (1998) Transglutaminase-induced cross-linking between subdomain 2 of G-actin and the 636–642 lysine-rich loop of myosin subfragment 1. Biophys. J. 74, 953–963.PubMedGoogle Scholar
  57. 57.
    Lymn, R. W. and Taylor, E. W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10, 4617–4624.PubMedGoogle Scholar
  58. 58.
    Bagshaw, C. R. and Trentham, D. R. (1975) Transient kinetic and isotopic tracer studies of themyosin adenosine triphosphatase reaction. J. Supramol. Struct. 3, 315–322.PubMedGoogle Scholar
  59. 59.
    Bagshaw, C. R., Trentham, D. R., Wolcott, R. G., and Boyer, P. D. (1975) Oxygen exchange in the gamma-phosphoryl group of protein-bound ATP during Mg2+-dependent adenosine triphosphatase activity of myosin. Proc. Natl. Acad. Sci. USA 72, 2592–2596.PubMedGoogle Scholar
  60. 60.
    Dale, M. P. and Hackney, D. D. (1987) Analysis of positional isotope exchange in ATP by cleavage of the beta P-O gamma P bond. Demonstration of negligible positional isotope exchange by myosin. Biochemistry 26, 8365–8372.PubMedGoogle Scholar
  61. 61.
    Evans, J. A. and Eisenberg, E. (1989) Intermediate oxygen exchange catalyzed by the actin-activated skeletal myosin adenosinetriphosphatase. Biochemistry 28, 7741–7747.PubMedGoogle Scholar
  62. 62.
    Tikunov, B. A., Sweeney, H. L., and Rome, L. C. (2001) Quantitative electrophoretic analysis of myosin heavy chains in single muscle fibers. J. Appl. Physiol. 90, 1927–1935.PubMedGoogle Scholar
  63. 63.
    Taylor, E. W. (1991) Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J. Biol. Chem. 266, 294–302.PubMedGoogle Scholar
  64. 64.
    Dantzig, J. A., Barsotti, R. J., Manz, S., Sweeney, H. L., and Goldman, Y. E. (1999) The ADP release step of the smooth muscle crossbridge cycle is not directly associated with force generation. Biophys. J. 77, 386–397.PubMedGoogle Scholar
  65. 65.
    Geeves, M. A. and Conibear, P. B. (1995) The role of three-state docking of myosin S1 with actin in force generation. Biophys. J. 68, 194S-199S.PubMedGoogle Scholar
  66. 66.
    Gordon, A. M., Homsher, E., and Regnier, M. (2000) Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–824.PubMedGoogle Scholar
  67. 67.
    Friedman, A. L., Geeves, M. A., Manstein, D. J. and Spudich, J. A. (1998) Kinetic characterization of myosin head fragments with long-lived myosin ATP states. Biochemistry 37, 9679–9687.PubMedGoogle Scholar
  68. 68.
    Konrad, M. and Goody, R. S. (1982) Kinetic and thermodynamic properties of the ternary complex between F-actin, myosin subfragment 1 and adenosine 5′-[beta, gamma-imido]triphosphate. Eur. J. Biochem. 128, 547–555.PubMedCrossRefGoogle Scholar
  69. 69.
    Lovell, S. J. and Harrington, W. F. (1981) Measurement of the fraction of myosin heads bound to actin in rabbit skeletal myofibrils in rigor. J. Mol. Biol. 149, 659–674.PubMedGoogle Scholar
  70. 70.
    Goodno, C. C. and Taylor, E. W. (1982) Inhibition of actomyosin ATPase by vanadate. Proc. Natl. Acad. Sci. USA 79, 21–25.PubMedGoogle Scholar
  71. 71.
    Phan, B. C., Faller, L. D., and Reisler, E. (1993) Kinetic and equilibrium analysis of the interactions of actomyosin subfragment-1.ADP with beryllium fluoride. Biochemistry 32, 7712–7719.PubMedGoogle Scholar
  72. 72.
    Maruta, S., Henry, G. D., Sykes, B. D., and Ikebe, M. (1993) Formation of the stable myosin-ADP-aluminum fluoride and myosin-ADP-beryllium fluoride complexes and their analysis using 19F NMR. J. Biol. Chem. 268, 7093–7100.PubMedGoogle Scholar
  73. 73.
    Werber, M. M., Peyser, Y. M., and Muhlard, A. (1992) Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes. Biochemistry 31, 7190–7197.PubMedGoogle Scholar
  74. 74.
    Peyser, Y. M., Ajtai, K., Werber, M. M., Burghardt, T. P., and Muhlrad, A. (1997) Effect of metal cations on the conformation of myosin subfragment-1-ADP-phosphate analog complexes: a near-UV circular dichroism study. Biochemistry 36, 5170–5178.PubMedGoogle Scholar
  75. 75.
    Chase, P. B., Martyn, D. A., and Hannon, J. D., (1994) Activation dependence and kinetics of force and stiffness inhibition by aluminiofluoride, a slowly dissociating analogue of inorganic phosphate, in chemically skinned fibres from rabbit psoas muscle. J. Muscle Res. Cell Motil. 15, 119–129.PubMedGoogle Scholar
  76. 76.
    Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M., et al. (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP·BeFx and MgADP·AlF4 . Biochemistry 34, 8960–8972.PubMedGoogle Scholar
  77. 77.
    Peyser, Y. M., Ajtai, K., Burghardt, T. P., and Muhlrad, A. (2001) Effect of ionic strength on the conformation of myosin subfragment 1-nucleotide complexes. Biophys. J. 81, 1101–1114.PubMedCrossRefGoogle Scholar
  78. 78.
    Rayment, I., Rypniewski, W. R., Schmidt-Bäse, K., Smith, R., Tomchick, D. R., Benning, M. M., et al. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58.PubMedGoogle Scholar
  79. 79.
    Houdusse, A., Szent-Györgyi, A. G., and Cohen, C. (2000) Three conformational states of scallop myosin S1. Proc. Natl. Acad. Sci. USA 97, 11,238–11,243.Google Scholar
  80. 80.
    Bauer, C. B., Holden, H. M., Thoden, J. B., Smith, R., and Rayment, I. (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J. Biol. Chem. 275, 38,494–38,499.Google Scholar
  81. 81.
    Gulick, A. M., Bauer, C. B., Thoden, J. B., Pate, E., Yount, R. G., and Rayment, I. (2000) X-ray structures of the Dictyostelium discoideum myosin motor domain with six non-nucleotide analogs. J. Biol. Chem. 275, 398–408.PubMedGoogle Scholar
  82. 82.
    Bauer, C. B., Kuhlman, P. A., Bagshaw, C. R., and Rayment, I. (1997) X-ray crystal structure and solution fluorescence characterization of Mg. 2′(3′)-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. J. Mol. Biol. 274, 394–407.PubMedGoogle Scholar
  83. 83.
    Root, D. D., Stewart, S., and Xu, J. (2002) Dynamic docking of myosin and actin observed with resonance energy transfer. Biochemistry 41, 1786–1794.PubMedGoogle Scholar
  84. 84.
    Shih, W. M., Gryczynski, Z., Lakowicz,J. R., and Spudich, J. A. (2000) A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102, 683–694.PubMedGoogle Scholar
  85. 85.
    Rosenfeld, S. S. and Taylor, E. W. (1984) Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle. J. Biol. Chem. 259, 11,920–11,929.Google Scholar
  86. 86.
    Hill, T. L., Eisenberg, E., and Greene,L. (1980) Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc. Natl. Acad. Sci. USA 77, 3186–3190.PubMedGoogle Scholar
  87. 87.
    Stein, L. A. (1995–96) Modeling of the actomyosin ATPase activity. Origin of the initial phosphate burst and implications of the phosphate release kinetics. Cell Biochem. Biophys. 27, 63–96.PubMedGoogle Scholar
  88. 88.
    Sleep, J. A. and Hutton, R. L. (1980) Exchange between inorganic phosphate and adenosine 5′-triphosphate in the medium by actomyosin subfragment 1. Biochemistry 19, 1276–1283.PubMedGoogle Scholar
  89. 89.
    Houdusse, A. and Sweeney, H. L. (2001) Myosin motors: missing structures and hidden springs. Curr. Opin. Struct. Biol. 11, 182–194.PubMedGoogle Scholar
  90. 90.
    Veigel, C., Coluccio, L. M., Jontes, J. D., Sparrow, J. C., Milligan, R. A., and Molloy, J. E. (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533.PubMedGoogle Scholar
  91. 91.
    Kitamura, K., Tokunaga, M., Iwane, A. H., and Yanagida, T. (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397, 129–134.PubMedGoogle Scholar
  92. 92.
    Hill, A. V. (1964) The effect of load on the heat of shortening of muscle. Proc. R. Soc. Lond. B Biol. Sci. 159, 297–318.PubMedGoogle Scholar
  93. 93.
    Homsher, E. (1987) Muscle enthalpy production and its relationship to actomyosin ATPase. Annu. Rev. Physiol. 49, 673–690.PubMedGoogle Scholar
  94. 94.
    Root, D. D. and Reisler, E. (1992) Cooperativity of thiol-modified myosin filaments: ATPase and motility assays of myosin function. Biophys. J. 63, 730–740.PubMedGoogle Scholar
  95. 95.
    He, Z.-H., Bottinelli, R., Pellegrino, M. A., Ferenczi, M. A., and Reggiani, C. (2000) ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys. J. 79, 945–961.PubMedCrossRefGoogle Scholar
  96. 96.
    Fenn, W. O. 91923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J. Physiol. (Lond.) 58, 175–203.Google Scholar
  97. 97.
    Xu, J. and Root, D. D. (2000) Conformational selection during weak binding at the actin and myosin interface. Biophys. J. 79, 1498–1510.PubMedGoogle Scholar
  98. 98.
    Altringham, I. D., Yancey, P. H., and Johnston, I. A. (1980) Limitations in the use of actomyosin threads as model contractile systems. Nature 287, 338–340.PubMedGoogle Scholar
  99. 99.
    Sheetz, M. P. and Spudich, J. A. (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro Nature 303, 31–35.PubMedGoogle Scholar
  100. 100.
    Yanagida, T., Nakase, M., Nishiyama, K., and Oosawa, F. (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60.PubMedGoogle Scholar
  101. 101.
    Kron, S. J. and Spudich, J. A. (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. USA 83, 6272–6276.PubMedGoogle Scholar
  102. 102.
    Homsher, E., Wang, F., and Sellers, J. R. (1992) Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am. J. Physiol. 262, C714-C723.PubMedGoogle Scholar
  103. 103.
    Kawai, M., Kawaguchi, K., Saito, M., and Ishiwata, S. (2000) Temperature change does not affect force between single actin filaments and HMM from rabbit muscles. Biophys J. 78, 3112–3119.PubMedCrossRefGoogle Scholar
  104. 104.
    Davis, J. S. (1998) Force generation simplified. Insights from laser temperature-jump experiments on contracting muscle fibers. Adv. Exp. Med. Biol. 453, 343–351.PubMedGoogle Scholar
  105. 105.
    Finer, J. T., Mehta, A. D., and Spudich, J. A. (1995) Characterization of single actin-myosin interactions. Biophys. J. 68, 291S-296S.PubMedGoogle Scholar
  106. 106.
    Warshaw, D. M., Desrosiers, J. M., Work, S. S., and Trybus, K. M. (1991) Effects of MgATP, MgADP, and Pi on actin movement by smooth muscle myosin. J. Biol. Chem. 266, 24,339–24,343.Google Scholar
  107. 107.
    Wada, H., Yamada, T., and Sugi, H. (1996) Effect of inorganic phosphate and ADP on the myofilament sliding induced by laser flash photolysis of caged ATP. Biochimi. Biophys. Acta 1274, 89–93.Google Scholar
  108. 108.
    Bing, W., Knott, A., and Marston, S. B. (2000) A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments. Biochem. J 350, 693–699.PubMedGoogle Scholar
  109. 109.
    Pate, E. and Cooke, R. (1989) Addition of phosphate to active muscle fibers probes actomyosin states within the powerstroke. Pflugers Arch. 414, 73–81.PubMedGoogle Scholar
  110. 109a.
    Kato, H., Nishizaka, T., Iga, T., Kinosita, K., Jr., and Ishiwata, S. (1999) Imaging of thermal activation of actomyosin motors. Proc. Natl. Acad. Sci. USA 96, 9602–9606.PubMedGoogle Scholar
  111. 110.
    Ishijima, A., Kojima, H., Higuchi, H., and Harada, Y. (1996) Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. Biophys. J. 70, 383–400.PubMedGoogle Scholar
  112. 111.
    Veigel, C., Bartoo, M. L., White, D. C, Sparrow, J. C., and Molloy, J. E. (1998) The stiffness of rabbit skeletal actomyosin crossbridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438.PubMedGoogle Scholar
  113. 112.
    Tyska, M. J., Dupuis, D. E., Guilford, W. H., Patlak, J. B., Waller, G. S., Trybus, K. M., et al. (1999) Two heads of myosin are better than one for generating force and motion. Proc. Natl. Acad. Sci. USA 96, 4402–4407.PubMedGoogle Scholar
  114. 113.
    Sugiura, S., Kobayakawa, N., Fujita, H., Yamashita, H., Momomura, S., Chaen, S., et al. (1998) Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation. Circ. Res. 82, 1029–1034.PubMedGoogle Scholar
  115. 114.
    Miyata, H., Yoshikawa, H., Hakozaki, H., Suzuki, N., Furuno, T., Ikegami, A., et al. (1995) Mechanical measurements of single actomyosin motor force. Biophys. J. 68, 286S-289S.PubMedGoogle Scholar
  116. 115.
    Merah, Z. and Morel, J. E. (1993) Isometric tension exerted by a myofibril of the frog at 0 degree C: geometrical considerations. J. Muscle Res. Cell Motil. 14, 552–553.PubMedGoogle Scholar
  117. 116.
    Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S., and Kinosita, K. (1995) Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254.PubMedGoogle Scholar
  118. 117.
    Nakajima, H., Kunioka, Y., Nakano, K., Shimizu, K., Seto, M., and Ando, T. (1997) Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. Biochem. Biophys. Res. Commun. 234, 178–182.PubMedGoogle Scholar
  119. 118.
    Huxley A. F. and Simmons, R. M. (1971) Proposed mechanism of force generation in striated muscle. Nature 233, 533–538.PubMedGoogle Scholar
  120. 119.
    Oplatka, A. (2000) A new outlook on the energetics of muscle contraction. Biophys. Chem. 86, 49–57.PubMedGoogle Scholar
  121. 120.
    Woledge, R. C., Curtin, N. A., and Homsher, E. (1985) Energetic aspects of muscle contraction. Monogr. Physiol. Soc. 41, 1–357.PubMedGoogle Scholar
  122. 121.
    Sugi, H., Iwamoto, H., Akimoto, T., and Ushitani, H. (1998) Load-dependent mechanical efficiency of individual myosin heads in skeletal muscle fibers activated by laser flash photolysis of caged calcium in the presence of a limited amount of ATP. Adv. Exp. Med. Biol. 453, 557–566.PubMedGoogle Scholar
  123. 122.
    Blange, T., van der Heide, U. A., Treijtel, B. W., and de Beer, E. L. (1997) The effect of actin filament compliance on the interpretation of the elastic properties of skeletal muscle fibres. J. Muscle Res. Cell Motil. 18, 125–131.PubMedGoogle Scholar
  124. 123.
    Wakabayashi, K., Sugimoto, Y., Tanaka, H., Ueno, Y., Takezawa, Y., and Amemiya, Y., (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67, 2422–2435.PubMedGoogle Scholar
  125. 124.
    Kojima, H., Ishijima, A., and Yanagida, T. (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc. Natl. Acad. Sci. USA 91, 12,962–12,966.Google Scholar
  126. 125.
    Huxley, H. E. and Hansen, J. (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 193–196.Google Scholar
  127. 126.
    Huxley, A. F. and Niedergerke R. C. (1954) Structural changes in muscle during contraction. Nature 173, 191–193.Google Scholar
  128. 127.
    Reedy, M. K., Holmes K. C., and Tregear, R. T. (1965) Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207, 1276–1280.PubMedGoogle Scholar
  129. 128.
    Jontes, J. D., Ostap, E. M., Pollard, T. D., and Milligan, R. A. (1998) Three-dimensional structure of Acanthamoeba castellanii myosin-IB (MIB) determined by cryoelectron microscopy of decorated actin filaments. J. Cell Biol. 141, 155–162.PubMedGoogle Scholar
  130. 129.
    Rayment, I., Holden, H. M., Whittaker M., Yohn, C. B., Lorenz, M., Holmes, K. C., et al. (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65.PubMedGoogle Scholar
  131. 130.
    Flicker, P. F., Milligan, R. A., and Applegate, D. (1991) Cryo-electron microscopy of S1-decorated actin filaments. Adv. Biophys. 27, 185–196.PubMedGoogle Scholar
  132. 131.
    Whittaker, M., Wilson-Kubalek, E. M. Smith, J. E., Faust, L., Milligan, R. A., and Sweeney, H. L. (1995) A 35-A movement of smooth muscle myosin on ADP release. Nature 378, 748–751.PubMedGoogle Scholar
  133. 132.
    Jontes, J. D., Wilson-Kubalek, E. M., and Milligan, R. A. (1995) A 32 degree tail swing in brush border myosinI on ADP release. Nature 378, 751–753.PubMedGoogle Scholar
  134. 133.
    Carragher, B. O., Cheng, N., Wang, Z. Y., Korn, E. D., Reilein, A., Belnap, D. M., et al. (1998) Structural invariance of constitutively active and inactive mutants of Acanthamoeba myosinIC bound to F-actin in the rigor and ADP-bound states. Proc. Natl. Acad. Sci. USA 95, 15,206–15,211.Google Scholar
  135. 134.
    Khromov, A. S., Somlyo, A. P., and Somlyo, A. V. (2001) Photolytic release of MgADP reduces rigor force in smooth muscle. Biophys. J. 80, 1905–1914.PubMedCrossRefGoogle Scholar
  136. 135.
    Schroder, R. R., Manstein, D. J., Jahn, W., Holden, H., Rayment, I., Holmes, K. C., et al. (1993) Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364, 171–174.PubMedGoogle Scholar
  137. 136.
    Volkmann, N., Hanein, D., Ouyang, G., Trybus, K. M., DeRosier, D. J., and Lowey, S. (2000) Evidence for cleft closure in actomyosin upon ADP release. Nat. Struct. Biol. 7, 1147–1155.PubMedGoogle Scholar
  138. 137.
    Applegate, D. and Flicker, P. (1987) New states of actomyosin. J. Biol. Chem. 262, 6856–6863.PubMedGoogle Scholar
  139. 138.
    Pollard, T. D., Bhandari, D., Maupin, P., Wachsstock, D., Weeds, A. G., and Zot, H. G. (1993) Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle. Biophys. J. 64, 454–471.PubMedGoogle Scholar
  140. 139.
    Walker, M. L., Burgess, S. A., Sellers, J. R., Wang, F., Hammer, J. A., 3rd, Trinick, J., et al. (2000) Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807.PubMedGoogle Scholar
  141. 140.
    Hallett, P., Offer, G., and Miles, M. J. (1995) Atomic force microscopy of the myosin molecule. Biophys. J. 68, 1604–1606.PubMedCrossRefGoogle Scholar
  142. 141.
    Zhang, Y., Shao, Z., Somlyo, A. P., and Somlyo, A. V. (1997) Cryo-atomic force microscopy of smooth muscle myosin. Biophys. J. 72, 1308–1318.PubMedCrossRefGoogle Scholar
  143. 142.
    Shao, Z., Shi, D., and Somlyo, A. V. (2000) Cryoatomic force microscopy of filamentous actin. Biophys. J. 78, 950–958.PubMedGoogle Scholar
  144. 143.
    Levitsky, D. I., Nikoleeva, O. P., Orlov, V. N., Pavlov, D. A., Ponomarev, M. A., and Rostkova, E. V. (1998) Differential scanning calorimetric studies on myosin and actin. Biochemistry (Moscow), 63, 322–333.Google Scholar
  145. 144.
    Kaspieva, O. V., Nikolaeva, O. P., Orlov, V. N., Ponomarev, M. A., Drachev, V. A., and Levitsky, D. I. (2001) Changes in the thermal unfolding of p-phenylenedimaleimide-modified myosin subfragment 1 induced by its ‘weak’ binding to F-actin. FEBS Lett. 489, 144–148.PubMedGoogle Scholar
  146. 145.
    Keller, T. C., 3rd and Mooseker, M. S. (1982) Ca++-calmodulin-dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J. Cell Biol. 95, 943–959.PubMedGoogle Scholar
  147. 146.
    Trybus, K. M., Huiatt, T. W., and Lowey, S. (1982) A bent monomeric conformation of myosin from smooth muscle. Proc. Natl. Acad. Sci. USA 79, 6151–6155.PubMedGoogle Scholar
  148. 147.
    Wendt, T., Taylor, D., Trybus, K. M., and Taylor, K. (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc. Natl. Acad. Sci. USA 98, 4361–4366.PubMedGoogle Scholar
  149. 148.
    Espreafico, E. M., Cheney, R. E., Matteoli, M., Nascimento, A. A., De Camilli, P. V., Larson, R. E., et al. (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 119, 1541–1557.PubMedGoogle Scholar
  150. 149.
    Kouyama, T. and Mihashi, K. (1981) Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur. J. Biochem. 114, 33–38.PubMedCrossRefGoogle Scholar
  151. 150.
    Andreev, O. A., Saraswat, L. D., Lowey, S., Slaughter, C., and Borejdo, J. (1999) Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin. Biochemistry 38, 2480–2485.PubMedGoogle Scholar
  152. 151.
    Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., and Holmes, K. C. (1990) Atomic structure of the actin: DNase I complex. Nature 347, 37–44.PubMedGoogle Scholar
  153. 152.
    Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. (1990) Atomic model of the actin filament. Nature 347, 44–49.PubMedGoogle Scholar
  154. 153.
    Lorenz, M., Popp, D., and Holmes, K. C. (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836.PubMedGoogle Scholar
  155. 154.
    Bremer, A., Henn, C., Goldie, K. N., Engel, A., Smith, P. R., and Aebi, U. (1994) Towards atomic interpretation of F-actin filament threedimensional reconstructions. J. Mol. Biol. 242, 683–700.PubMedGoogle Scholar
  156. 155.
    Taylor, K. A., Schmitz, H., Reedy, M. C., Goldman, Y. E., Franzini-Armstrong, C., Sasaki, H., et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 99, 421–431.PubMedGoogle Scholar
  157. 156.
    Mendelson, R. and Morris, E. P. (1997) The structure of the acto-myosin subfragment 1 complex: results of searches using data from electron microscopy and x-ray crystallography. Proc. Natl. Acad. Sci. USA 94, 8533–8538.PubMedGoogle Scholar
  158. 157.
    Shimada, T., Sasaki, N., Ohkura, R., and Sutoh, K. (1997) Alanine scanning mutagenesis of the switch I region in the ATPase site of Dictyostelium discoideum myosin II. Biochemistry 36, 14,037–14,043.Google Scholar
  159. 158.
    Sasaki, N., Shimada, T., and Sutoh, K. (1998) Mutational analysis of the switch II loop of Dictyostelium myosin II. J. Biol. Chem. 273, 20,334–20,340.Google Scholar
  160. 159.
    Shih, W. M. and Spudich, J. A. (2001) The myosin relay helix to converter interface remains intact throughout the actomyosin ATPase cycle. J. Biol. Chem. 276, 19,491–19,494.Google Scholar
  161. 160.
    Yengo, C. M., Chrin, L. R., Rovner, A. S., and Berger, C. L. (2000) Tryptophan 512 is sensitive to conformational changes in the rigid relay loop of smooth muscle myosin during the MgATPase cycle. J. Biol. Chem. 275, 25,481–25,487.Google Scholar
  162. 161.
    Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C., and Lindberg, U. (1993) The structure of crystalline profilin-beta-actin. Nature 365, 810–816.PubMedGoogle Scholar
  163. 162.
    McLaughlin, P. J., Gooch, J. T., Mannherz, H. G., and Weeds, A. G. (1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364, 685–692.PubMedGoogle Scholar
  164. 163.
    Otterbein, L. R., Graceffa, P., and Dominguez R. (2001) The crystal structure of uncomplexed actin in the ADP state. Science 293, 708–711.PubMedGoogle Scholar
  165. 164.
    Robinson, R. C., Mejillano, M., Le, V. P., Burtnick, L. D., Yin, H. L., Choe, S. (1999) Domain mvoement in gelsolin: a calcium-activated switch. Science 286, 1939–1942.PubMedGoogle Scholar
  166. 165.
    Dominguez, R., Freyzon, Y., Trybus, K. M., and Cohen, C. (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571.PubMedGoogle Scholar
  167. 166.
    Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Györgyi, A. G., and Cohen, C. (1999) Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470.PubMedGoogle Scholar
  168. 167.
    Smith, C. A. and Rayment, I. (1996) X-ray structure of the magnesium (II)·ADP· vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution. Biochemistry 35, 5404–5417.PubMedGoogle Scholar
  169. 168.
    Yount, R. G., Lawson, D., and Rayment, I. (1995) Is myosin a “back door” enzyme? Biophys J. 68, 44S-47S.PubMedGoogle Scholar
  170. 169.
    Minehardt, T. J., Cooke, R., Pate, E., and Kollman, P. A. (2001) Molecular dynamics study of the energetic, mechanistic, and structural implications of a closed phosphate tube in ncd. Biophys. J. 80, 1151–1168.PubMedGoogle Scholar
  171. 170.
    Nyitrai, M., Hild, G., Bódis, E., Lukács, A., and Somogyi, B. (2000) Flexibility of myosin-subfragment-1 in its complex with actin as revealed by fluorescence resonance energy transfer. Eur. J. Biochem. 267, 4334–4338.PubMedGoogle Scholar
  172. 171.
    Baker, J. E., Brust-Mascher, I., Ramachandran, S., LaConte, L. E., and Thomas, D. D. (1998) A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc. Natl. Acad. Sci. USA 95, 2944–2949.PubMedGoogle Scholar
  173. 172.
    Brown, L. J., Klonis, N., Sawyer, W. H., Fajer, P. G., and Hambly, B. D. (2001) Independent movement of the regulatory and catalytic domains of myosin heads revealed by phosphorescence anisotropy. Biochemistry 40, 8283–8291.PubMedGoogle Scholar
  174. 173.
    Burghardt, T. P., Cruz-Walker, A. R., Park, S., and Ajtai, K. (2001) Conformation of myosin interdomain interactions during contraction: deductions from muscle fibers using polarized fluorescence. Biochemistry 40, 4821–4833.PubMedGoogle Scholar
  175. 174.
    Andreev, O. A., Andreeva, A. L., Markin, V. S., and Borejdo, J. (1993) Two different rigor complexes of myosin subfragment 1 and actin. Biochemistry 32, 12,046–12,053.Google Scholar
  176. 175.
    Thomas, D. D., Ramachandran, S., Roopanrine, O., Hayden, D. W., and Ostap, E. M. (1995) The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes. Biophys. J. 68, 135S-141S.PubMedGoogle Scholar
  177. 176.
    Homma, K., Yoshimura, M., Saito, J., Ikebe, R., and Ikebe, M. (2001) The core of the motor domain determines the direction of myosin movement. Nature 412, 831–834.PubMedGoogle Scholar
  178. 177.
    Cooper, W. C., Chrin, L. R., and Berger, C. L. (2000) Detection of fluorescently labeled actinbound cross-bridges in actively contracting myofibrils. Biophys. J. 78, 1449–1457.PubMedGoogle Scholar
  179. 178.
    Root, D. D. and Reisler, E. (1992) The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin. Protein Sci. 1, 1014–1022.PubMedGoogle Scholar
  180. 179.
    Yamamoto, T., Nakayama, S., Kobayashi, N., Munekata, E., and Ando, T. (1994) Determination of electrostatic potetial around specific locations on the surface of actin by diffusion-enhanced fluorescence resonance energy transfer. J. Mol. Biol. 241, 714–731.PubMedGoogle Scholar
  181. 180.
    Corrie, J. E., Brandmeier, B. D., Ferguson, R. E., Trentham, D. R., Kendrick-Jones, J., Hopkins, S. C., et al. (1999) Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430.PubMedGoogle Scholar
  182. 181.
    Highsmith, S. and Jardetzky, O. (1983) Actininduced changes in the dynamics of myosin subfragment-1 detected by nuclear magnetic resonance. Ciba Found. Symp. 93, 156–158.PubMedGoogle Scholar
  183. 182.
    Barnett, V. A. and Thomas, D. D. (1984) Saturation transfer electron paramagnetic resonance of spin-labeled muscle fibers. Dependence of myosin head rotational motion on sarcomere length. J. Mol. Biol. 179, 83–102.PubMedGoogle Scholar
  184. 183.
    Kim, E., Miller, C. J., Motoki, M., Seguro, K., Muhlrad, A., and Reisler, E. (1996) Myosininduced changes in F-actin: fluorescence prob ing of subdomain 2 by dansyl ethylenediamine attached to Gln-41. Biophys. J. 70, 1439–1446.PubMedCrossRefGoogle Scholar
  185. 184.
    Borovikov, Y. S., Moraczewska, J., Khoroshev, M. I., and Strzelecka-Goaszewska, H. (2000) Proteolytic cleavage of actin within the DNase-I-binding loop changes the conformation of Factin and its sensitivity to myosin binding. Biochim. Biophys. Acta 1478, 138–151.PubMedGoogle Scholar
  186. 185.
    Irving, M., Allen, T. S., Sabido-David, C., Craik, J. S., Brandmeier, B., Kendrick-Jones, J., et al. (1995) Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375, 688–691.PubMedGoogle Scholar
  187. 186.
    Sabido-David, C., Hopkins, S. C., Saraswat, L. D., Lowey, S., Goldman, Y. E., and Irving, M. (1998) Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres. J. Mol. Biol. 279, 387–402.PubMedGoogle Scholar
  188. 187.
    Haugland, R. P. (1975) Myosin structure. Proximity measurements by fluorescence energy transfer. J. Supramol. Struct. 3, 338–347.PubMedGoogle Scholar
  189. 188.
    dos Remedios, C. G. and Moens, P. D. (1995) Actin and the actomyosin interface: a review. Biochim. Biophys. Acta 1228, 99–124.PubMedGoogle Scholar
  190. 189.
    Förster, T. (1948) Zwischenmolekulare Energiwanderung und Fluoreszence [Intermolecular energy migration and fluorescence]. Ann. Phys. 2, 55–75.Google Scholar
  191. 190.
    dos Remedios, C. G. and Moens, P. D. (1995) Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J. Struct. Biol. 115, 175–185.PubMedGoogle Scholar
  192. 191.
    Cantor, C. R. and Schimmel, P. R. (1980) Biophysical Chemistry: II. Techniques for the Study of Biological Structure and Function, W. H. Freeman, New York.Google Scholar
  193. 192.
    Schiller, P. W. (1975) The measurement of intramolecular distances by energy transfer, in Biochemical Fluorescence: Concepts (Chen, R. F. and Edelhoch, H., eds.), Marcel Dekker, New York, pp. 285–303.Google Scholar
  194. 193.
    Selvin, P. R. (1995) Fluorescence resonance energy transfer. Meth. Enzymol. 246, 300–334.PubMedCrossRefGoogle Scholar
  195. 194.
    Stryer, L. and Haugland, R. P. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726.PubMedGoogle Scholar
  196. 195.
    Root, D. D., Shangguan, X., Xu, J., and McAllister, M. (1999) Determination of fluorescent probe orientations on biomolecules by conformational searching: algorithm testing and applications to the atomic model of myosin. J. Struct. Biol. 127, 22–34.PubMedGoogle Scholar
  197. 196.
    dos Remedios, C. G., Miki, M., and Barden, J. A. (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J. Muscle Res. Cell Motil. 8, 97–117.PubMedGoogle Scholar
  198. 197.
    O'Donoghue, S. I., Hambly, B. D., and dos Remedios, C. G. (1992) Models of the actin monomer and filament from fluorescence resonance-energy transfer. Eur. J. Biochem. 205, 591–601.PubMedGoogle Scholar
  199. 198.
    Xu, J. and Root, D. D. (1998) Domain motion between the regulatory light chain and the nucleotide site in skeletal myosin. J. Struct. Biol. 123, 150–161.PubMedGoogle Scholar
  200. 199.
    Smyczynski, C. and Kasprzak, A. A. (1997) Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1. Biochemistry 36, 13,201–13,207.Google Scholar
  201. 200.
    Yengo, C. M., Chrin, L. R., and Berger, C. L. (2000) Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer. J. Struct. Biol. 131, 187–196.PubMedGoogle Scholar
  202. 201.
    Chakrabarty, T., Xiao, M., Cooke, R., and Selvin, P. R. (2002) Holding two heads together: stability of the myosin II rod measured by resonance energy transfer between the heads. Proc. Natl. Acad. Sci. USA 99, 6011–6016.PubMedGoogle Scholar
  203. 202.
    Maruta, S. and Homma, K. (2000) Conformational changes in the unique loops bordering the ATP binding cleft of skeletal muscle myosin mediate energy transduction. J. Biochem. 128, 695–704.PubMedGoogle Scholar
  204. 203.
    Palm, T., Sale, K., Brown, L., Li, H., Hambly, B., and Fajer, P. G. (1999) Intradomain distances in the regulatory domain of the myosin head in prepower and postpower stroke states: fluorescence energy transfer. Biochemistry 38, 13,026–13,034.Google Scholar
  205. 204.
    Chantler, P. D. and Tao, T. (1986) Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin. J. Mol. Biol. 192, 87–99.PubMedGoogle Scholar
  206. 205.
    Kekic, M., Huang, W., Moens, P. D., Hambly, B. D., and dos Remedios, C. G. (1996) Distance measurements near the myosin head-rod junction using fluorescence spectroscopy. Biophys. J. 71, 40–47.PubMedGoogle Scholar
  207. 206.
    Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T., and Sutoh, K. (1998) Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383.PubMedGoogle Scholar
  208. 207.
    Yasunaga, T., Suzuki, Y., Ohkura, R., Sutoh, K., and Wakabayashi, T. (2000) ATP-induced transconformation of myosin revealed by determining three-dimensional positions of fluorophores from fluorescence energy transfer measurements. J. Struct. Biol. 132, 6–18.PubMedGoogle Scholar
  209. 208.
    Root, D. D. (1997) In situ molecular asociation of dystrophin with actin revealed by sensitized emission immuno-resonance energy transfer. Proc. Natl. Acad. Sci. USA 94, 5685–5690.PubMedGoogle Scholar
  210. 209.
    Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., and Weiss, S. (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268.PubMedGoogle Scholar
  211. 210.
    Clegg, R. M., Murchie, A. I., Zechel, A., and Lilley, D. M. (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 90, 2994–2998.PubMedGoogle Scholar
  212. 211.
    Barden, J. A. and dos Remedios, C. G. (1984) The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy. J. Biochem. 96, 913–921.PubMedGoogle Scholar
  213. 212.
    Ando, T., Yamamoto, T., Kabayashi, N., and Munekata, E. (1992) Synthesis of a highly luminescent terbium chelate and its application to actin. Biochim. Biophys. Acta 1102, 186–196.Google Scholar
  214. 213.
    Burmeister Getz, E., Cooke, R., and Selvin, P. R. (1998) Luminescence resonance energy transfer measurements in myosin. Biophys. J. 74, 2451–2458.PubMedGoogle Scholar
  215. 217.
    Arata, T. (1996) A myosin head can interact with two chemically modified G-actin monomers at ATP-modulated multiple sites. Biochemistry 35, 16,061–16,068.Google Scholar
  216. 218.
    Wells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M., Hasson, T., et al. (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508.PubMedGoogle Scholar
  217. 219.
    Brenner, B., Xu, S., Chalovich, J. M., and Yu, L. C. (1996) Radial equilibrium lengths of actomyosin cross-bridges in muscle. Biophys. J. 71, 2751–2758.PubMedGoogle Scholar
  218. 214.
    Tao, T., and Lamkin, M. (1981) Excitation energy transfer studies on the proximity between SH1 and the adenosinetriphosphatase site in myosin subfragment 1. Biochemistry 20, 5051–5055.PubMedGoogle Scholar
  219. 215.
    Cheung, H. C., Gonsoulin, F., and Garland, F. (1985) An investigation of the SH1-SH2 and SH1-ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry. Biochim. Biophys. Acta. 832, 52–62.PubMedGoogle Scholar
  220. 216.
    Kensler, R. W. (2002) Mammalian cardiac muscle thick filaments: their periodicity and interactions with actin. Biophys. J. 82, 1497–1508.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Department of Biological Sciences, Division of Biochemistry and Molecular BiologyUniversity of North TexasDenton

Personalised recommendations