Cell Biochemistry and Biophysics

, Volume 37, Issue 1, pp 53–70 | Cite as

Putative role for a myosin motor in store-operated calcium entry

Review Article


Store-operated calcium (SOC) entry is the most prominent mode of calcium entry in nonexcitable cells, although important questions remain regarding its mechanism(s) of activation and the molecular identity of SOC entry channels. Recent work using Drosophila melanogaster and mammalian cells suggest that myosin may play a central role in regulation of the open state of SOC entry channels. The most direct evidence for such a role for myosin motor function is in the Drosophila rhabdomere, where a myosin homolog appears to terminate channel signaling. Studies directly examining the contribution of myosin to mammalian SOC entry are lacking. However, several indirect lines of evidence support a role for myosin motor function in the control of calcium entry. Both inhibition of myosin light-chain kinase (the kinase responsible for myosin activation) and disruption of filamentous actin (the track for actomyosin motor function) reduces SOC entry and appear to prevent activation of a calcium-selective SOC entry current. Thus this review summarizes data—emphasizing recent evidence in mammalian systems—implicating myosin motor function in the control of SOC entry.

Index Entries

Signalplex transductionsome myosin light-chain kinase actin ion channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolcott, R. G., and Boyer, P. D. (1974) The reversal of the myosin and actomyosin ATPase reactions and the free energy of ATP binding to myosin. Biochem. Biophys. Res. Commun. 57, 709–716.PubMedGoogle Scholar
  2. 2.
    Berg, J. S., Powell, B. C., and Cheney, R. E. (2001) A millennial myosin census. Mol. Biol. Cell. 12, 780–794.PubMedGoogle Scholar
  3. 3.
    Sellers, J. R. (2000) Myosins: a diverse superfamily. [review]. Biochim. Biophys. Acta. 1496, 3–22.PubMedGoogle Scholar
  4. 4.
    Stryer, L. (1995) Biochemistry. W. H. Freeman, New York.Google Scholar
  5. 5.
    Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Gyorgyi, A. G., and Cohen, C. (1999) Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470.PubMedGoogle Scholar
  6. 6.
    Kudryashov, D. S., Chibalina, M. V., Birukov, K. G., Lukas, T. J., Sellers, J. R., Van Eldik, L. J., et al. (1999) Unique sequence of a high molecular weight myosin light chain kinase is involved in interaction with actin cytoskeleton. FEBS Lett. 463, 67–71.PubMedGoogle Scholar
  7. 7.
    Lazar, V., and Garcia, J. G. (1999) A single human myosin light chain kinase gene (MLCK; MYLK). Genomics 57, 256–267.PubMedGoogle Scholar
  8. 8.
    Verin, A. D., Gilbert-McClain, L. I., Patterson, C. E., and Garcia, J. G. (1998) Biochemical regulation of the nonmuscle myosin light chain kinase isoform in bovine endothelium. Am. J. Respir. Cell. Mol. Biol. 19, 767–776.PubMedGoogle Scholar
  9. 9.
    Verin, A. D., Lazar, V., Torry, R. J., Labarrere, C. A., Patterson, C. E., and Garcia, J. G. (1998) Expression of a novel high molecular-weight myosin light chain kinase in endothelium. Am. J. Respir. Cell. Mol. Biol. 19, 758–766.PubMedGoogle Scholar
  10. 10.
    Watterson, D. M., Collinge, M., Lukas, T. J., Van Eldik, L. J., Birukov, K. G., Stepanova, O. V., et al. (1995) Multiple gene products are produced from a novel protein kinase transcription region. FEBS Lett. 373, 217–220.PubMedGoogle Scholar
  11. 11.
    Garcia, J. G., Lazar, V., Gilbert-McClain, L. I., Gallagher, P. J., and Verin, A. D. (1997) Myosin light chain kinase in endothelium: molecular cloning and regulation. Am. J. Respir. Cell. Mol. Biol. 16, 489–494.PubMedGoogle Scholar
  12. 12.
    Birukov, K. G., Csortos, C., Marzilli, L., Dudek, S., Ma, S. F., Bresnick, A. R., et al. (2001) Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60Src. J. Biol. Chem. 276, 8567–8573.PubMedGoogle Scholar
  13. 13.
    Gilbert-McClain, L. I., Verin, A. D., Shi, S., Irwin, R. P., and Garcia, J. G. (1998) Regulation of endothelial cell myosin light chain phosphorylation and permeability by vanadate. J. Cell Biochem. 70, 141–155.PubMedGoogle Scholar
  14. 14.
    Shi, S., Verin, A. D., Schaphorst, K. L., Gilbert-McClain, L. I., Patterson, C. E., Irwin, R. P., et al. (1998) Role of tyrosine phosphorylation in thrombin-induced endothelial cell contraction and barrier function. Endothelium 6, 153–171.PubMedGoogle Scholar
  15. 15.
    Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., et al. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248.PubMedGoogle Scholar
  16. 16.
    Essler, M., Staddon J. M., Weber, P. C., and Aepfelbacher, M. (2000) Cyclic AMP blocks bacterial lipopolysaccharide-induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling. J. Immunol. 164, 6543–6549.PubMedGoogle Scholar
  17. 17.
    Moore, T. M., Norwood, N. R., Creighton, J. R., Babal, P., Brough, G. H., Shasby, D. M., et al. (2000) Receptor-dependent activation of store-operated calcium entry increases endothelial cell permeability. Am. J. Physiol. 279, L691-L698.Google Scholar
  18. 18.
    Moore, T. M., Brough, G. H., Babal, P., Kelly, J. J., Li, M., and Stevens, T. (1998) Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am. J. Physiol. 275, L574-L582.PubMedGoogle Scholar
  19. 19.
    Wysolmerski, R. B. and Lagunoff, D. (1991) Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am. J. Physiol. 261, C32-C40.PubMedGoogle Scholar
  20. 20.
    Moy, A., Van Engelenhoven, J., Bodmer, J., Kamath, J., Keese, C., Giaever, I., et al. (1996). Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J. Clin. Invest. 97, 1020–1027.PubMedCrossRefGoogle Scholar
  21. 21.
    Ikonen, E., de Almeid, J. B., Fath, K. R., Burgess, D. R., Ashman, K., Simons, K., et al. (1997) Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles. J. Cell Sci. 110, 2155–2164.PubMedGoogle Scholar
  22. 22.
    Narula, N., McMorrow, I., Plopper, G., Doherty, I., Matlin, K. S., Burke, B., et al. (1992) Identification of a 200-kD, brefeldin-sensitive protein on Golgi membranes. J. Cell Biol. 117, 27–38.PubMedGoogle Scholar
  23. 23.
    de Almeida, J. B., Doherty, J., Ausiello, D. A., and Stow, J. L. (1993) Binding of the cytosolic p200 protein to Golgi membranes is regulated by heterotrimeric G proteins. J. Cell Sci. 106, 1239–1248.PubMedGoogle Scholar
  24. 24.
    Musch, A., Cohen, D., and Rodriguez-Boulan, E. (1997) Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell Biol. 138, 291–306.PubMedGoogle Scholar
  25. 25.
    Wagner, M. C., Barylko, B., and Albanesi, J. P. (1992) Tissue distribution and subcellular localization of mammalian myosin I. J. Cell Biol. 119, 163–170.PubMedGoogle Scholar
  26. 26.
    Honer, B. and Jockushch, B. M. (1988) Stress fiber dynamics as probed by antibodies against myosin. Eur. J. Cell Biol. 47, 14–21.PubMedGoogle Scholar
  27. 27.
    Tomasek, J. J., Hay, E. D., and Fujiwara, K. (1982) Collagen modulates cell shape and cytoskeleton of embryonic corneal and fibroma fibroblasts: distribution of action, alpha-actinin, and myosin. Dev. Biol. 92, 107–122.PubMedGoogle Scholar
  28. 28.
    Evans, L. L., Hammer, J., and Bridgman, P. C. (1997) Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J. Cell Sci. 110, 439–449.PubMedGoogle Scholar
  29. 29.
    Wolff, P., Abreu, P. A., Espreafico, E. M., Costa, M. C., Larson, R. E., and Ho, P. L. (1999) Characterization of myosin V from PC12 cells. Biochem. Biophys. Res. Commun. 262, 98–102.PubMedGoogle Scholar
  30. 30.
    Berg, J. S., Derfler, B. H., Pennisi, C. M., Corey, D. P., and Cheney, R. E. (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113 (Pt. 19), 3439–3451.PubMedGoogle Scholar
  31. 31.
    Hamada, K., Shimizu, T., Matsui, T., Tsukita, S., and Hakoshima, T. (2000) Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462.PubMedGoogle Scholar
  32. 32.
    Li, H. S., Porter, J. A., and Montell, C. (1998) Requirement for the NINAC kinase/myosin for stable termination of the visual cascade. J. Neurosci. 18, 9601–9606.PubMedGoogle Scholar
  33. 33.
    Li, H. S. and Montell, C. (2000) TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J. Cell Biol. 150, 1411–1422.PubMedGoogle Scholar
  34. 34.
    Shieh, B. H. and Niemeyer, B. (1995) A novel protein encoded by the InaD gene regulates recovery of visual transduction in Drosophila. Neuron 14, 201–210.PubMedGoogle Scholar
  35. 35.
    Shieh, B. H. and Zhu, M. Y. (1996) Regulation of the TRP Ca2+ channel by INAD in Drosophial photoreceptors. Neuron 16, 991–998.PubMedGoogle Scholar
  36. 36.
    Shieh, B. H., Zhu, M. Y., Lee, J. K., Kelly, I. M., and Bahiraei, F. (1997) Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophial phototransduction in vivo. Proc. Natl. Acad. Sci. USA 94, 12,682–12,687.Google Scholar
  37. 37.
    Tsunoda, S., Sierralta, J., Sun, Y., Bodner, R., Suzuki, E., Becker, A., et al. (1997) A multivalent PDZ-domain protein assembles signaling complexes in a G-protein-coupled cascade. Nature 388, 243–249.PubMedGoogle Scholar
  38. 38.
    Tsunoda, S. and Zuker, C. S. (1999) The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. [review] Cell Calcium 26, 165–171.PubMedGoogle Scholar
  39. 39.
    Wes, P. D., Xu, X. Z., Li, H. S., Chien, F., Doberstein, S. K., and Montell, C. (1999) Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nat. Neurosci. 2, 447–453.PubMedGoogle Scholar
  40. 40.
    Berridge, M. J. (1995) Capacitative calcium entry. Biochem. J. 312, 1–11.PubMedGoogle Scholar
  41. 41.
    Parekh, A. B. and Penner, R. (1997) Store depletion and calcium influx. Physiol. Rev. 77, 901–930.PubMedGoogle Scholar
  42. 42.
    Putney, J. W., Jr. (1999) “Kissin' cousins”: intimate plasma membrane-ER interactions underlie capacitative calcium entry. Cell 99, 5–8.PubMedGoogle Scholar
  43. 43.
    Harteneck, C., Plant, T. D., and Schultz, G. (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166.PubMedGoogle Scholar
  44. 44.
    Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2000) Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J. Mol. Med. 78, 14–25.PubMedGoogle Scholar
  45. 45.
    Tran, Q. K., Ohashi, K., and Watanabe, H. (2000) Calcium signalling in endothelial cells. Cardiovasc. Res. 48, 13–22.PubMedGoogle Scholar
  46. 46.
    Moore, T. M., Chetham, P. M., Kelly, J. J. and Stevens, T. (1998) Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am. J. Physiol. 275, L203-L222.PubMedGoogle Scholar
  47. 47.
    Nilius, B., Viana, F., and Droogmans, G. (1997) Ion channels in vascular endothelium. Annu. Rev. Physiol. 59, 145–170.PubMedGoogle Scholar
  48. 48.
    Bubb, M. R., Spector, I., Beyer, B. B., and Fosen, K. M. (2000_ Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J. Biol. Chem. 275, 5163–5170.PubMedGoogle Scholar
  49. 49.
    Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L., and Korn, E. D. (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to Factin J. Biol. Chem. 269, 14,869–14,871.Google Scholar
  50. 50.
    Norwood, N., Moore, T. M., Dean, D. A., Bhattacharjee, R., Li, M., and Stevens, T. (2000) Store-operated calcium entry and increased endothelial cell permeability. Am. J. Physiol. 279, L815-L824.Google Scholar
  51. 51.
    Patterson, R. L., van Rossum, D. B., and Gill, D. L. (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98, 487–499.PubMedGoogle Scholar
  52. 52.
    Ribeiro, C. M., Reece, J., and Putney, J. W. Jr., (1997) Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J. Biol. Chem. 272, 26,555–25,561.Google Scholar
  53. 53.
    Rosado, J. A., Jenner, S., and Sage, S. O. (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J. Biol. Chem. 275, 7527–7533.PubMedGoogle Scholar
  54. 54.
    Holda, J. R. and Blatter, L. A. (1997) Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett. 403, 191–196.PubMedGoogle Scholar
  55. 55.
    Shasby, D. M., Stevens, T., Ries, D., Moy, A. B., Kamath, J. M., Kamath, A. M., et al. (1997) Thrombin inhibits myosin light chain dephosphorylation in endothelial cells. Am. J. Physiol. 272, L311-L319.PubMedGoogle Scholar
  56. 56.
    Shasby, D., Shasby, S., Sullivan, J., and Peach, M. (1982) Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ. Res. 51, 657–661.PubMedGoogle Scholar
  57. 57.
    Sheldon, R., Moy, A., Lindsley, K., Shasby, S., and Shasby, D. (1993) Role of myosin light-chain phosphorylation in endothelial cell retraction. Am. J. Physiok. 265, L606-L612.Google Scholar
  58. 58.
    Verin, A. D., Cooke, C., Herenviova, M., Patterson, C. E., and Garcia, J. G. (1998) Role of Ca2+/calmodulin-dependent phosphatase 2B in thrombin-induced endothelial cell contractile responses. Am. J. Physiol. 275, L788-L799.PubMedGoogle Scholar
  59. 59.
    Wysolmerski, R. B. and Lagunoff, D. (1990) Involvement of myosin light-chain kinase in endothelial cell retraction. Proc. Natl. Acad. Sci. USA 87, 16–20.PubMedGoogle Scholar
  60. 60.
    Huang, S. and Ingber, D. E. (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp. Cell Res. 261, 91–103.PubMedGoogle Scholar
  61. 61.
    Dike, L. E., Chen, C. S., Mrksich, M., Tien, J., Whitesides, G. M., and Ingber, D. E. (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Rev. Biol. Anim. 35, 441–448.Google Scholar
  62. 62.
    Pourati, J., Maniotis, A., Spiegel, D., Schaffer, J. L. Butler, J. P., Fredberg, J. J., et al. (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. 274, C1283-C1289.PubMedGoogle Scholar
  63. 63.
    Stamenovic, D., Fredberg, J. J., Wang, N., Butler, J. P., and Ingber, D. E. (1996) A microstructural approach to cytoskeletal mechanics based on tensegrity. J. Theor. Biol. 181, 125–136.PubMedGoogle Scholar
  64. 64.
    Ingber, D. E., Prusty, D., Sun, Z., Betensky, H., and Wang, N. (1995) Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomech. 28, 1471–1484.PubMedGoogle Scholar
  65. 65.
    Garcia, J. G., Verin, A. D., and Schaphorst, K. L. (1996) Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin. Thromb. Hemost. 22, 309–315.PubMedCrossRefGoogle Scholar
  66. 66.
    Garcia, J. G., Davis, H. W., and Patterson, C. E. (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J. Cell Physiol. 163, 510–522.PubMedGoogle Scholar
  67. 67.
    Watanabe, H., Takahashi, R., Zhang, X. X., Kakizawa, H., Hayashi, H., and Ohno, R. (1996) Inhibition of agonist-induced Ca2+ entry in endothelial cells by myosin light-chain kinase inhibitor. Biochem. Biophys. Res. Commun. 225, 777–784.PubMedGoogle Scholar
  68. 68.
    Watanabe, H., Takahashi, R., Zhang, X. X., Goto, Y., Hayashi, H., Ando, J., et al. (1998) An essential role of myosin light-chain kinase in the regulation of agonist- and fluid flow-stimulated Ca2+ influx in endothelial cells. FASEB J. 12, 341–348.PubMedGoogle Scholar
  69. 69.
    Watanabe, H., Tran, Q., Takeuchi, K., Fukao, M., Liu, M. Y., Kanno, M. et al. (2001) Myosin light-chain kinase regulates endothelial calcium entry and endothelium-dependent vasodilation. FASEB J. 15, 282–284.PubMedGoogle Scholar
  70. 70.
    Garcia, J. G., Verin, A. D., Schaphorst, K., Siddiqui, R., Patterson, C. E., Csortos, C., et al. (1999) Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60(src). Am. J. Physiol. 276, L989-L998.PubMedGoogle Scholar
  71. 71.
    Babnigg, G., Bowersox, S. R., and Villereal, M.L. (1997) The role of pp60c-src in the regulation of calcium entry via storeoperated calcium channels. J. Biol. Chem. 272, 29,434–29,437.Google Scholar
  72. 72.
    Fleming, I., Fisslthaler, B., and Busse, R. (1996) Interdependence of calcium signaling and protein tyrosine phosphorylation in human endothelial cells. J. Biol. Chem. 271, 11,009–11,015.Google Scholar
  73. 73.
    Lee, K. M. and Villereal, M. L. (1996) Tyrosine phosphorylation and activation of pp60c-src and pp125FAK in bradykinin-stimulated fibroblasts. Am. J. Physiol. 270, C1430-C1437.PubMedGoogle Scholar
  74. 74.
    Jenner, S., Farndale, R. W., and Sage, S. O. (1994) The effect of calcium-store depletion and refilling with various bivalent cations on tyrosine phosphorylation and Mn2+ entry in fura-2-loaded human platelets. Biochem. J. 303, 337–339.PubMedGoogle Scholar
  75. 75.
    Norwood, N., Wu, S., Dudek, S., Garcia, J. G. N., and Stevens, T. (2001) Endothelial cell myosin light chain kinase-1 and activation of store operated Ca2+ entry. FASEB J. 15, A492.Google Scholar
  76. 76.
    Katan, M. and Allen, V. L. (1999) Modular PH and C2 domains in membrane attachment and other functions. FEBS Lett. 452, 36–40.PubMedGoogle Scholar
  77. 77.
    Nalefski, E. A., Wisner, M. A., Chen, J. Z., Sprang, S. R., Fukuda M., Mikoshiba, K., et al. (2001) C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity. Biochemistry 40, 3089–3100.PubMedGoogle Scholar
  78. 78.
    Rizo, J. and Sudhof, T. C. (1998) C2-domains, structure and function of a universal Ca2+ binding domain. J. Biol. Chem. 273, 15,879–15,882.Google Scholar
  79. 79.
    Cioffi, D., Zhu, M., Goodman, S. R., and Stevens, T. (2001) Association of Trp-1 and-4 store operated Ca2+ entry channels with the spectrin membrane skeleton in endothelium. FASEB J. 15, A161.Google Scholar
  80. 80.
    Wang, C. Y., Walsh, M. P., and Wang, J. H. (1987) Effect of phosphorylation by cyclic AMP-dependent protein kinase on the smooth muscle actomyosin Mg2+ ATPase stimulatory activity of fodrin. J. Biol. Chem. 262, 14,716–14,722.Google Scholar
  81. 81.
    Tomishige, M., Sako, Y., and Kusumi, A. (1998) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J. Cell Biol. 142, 989–1000.PubMedGoogle Scholar
  82. 82.
    Ma, Y., Zimmer, W. E., Riederer, B. M., Bloom, M. L., Barker, J. E., Goodman, S. R., et al. (1993) The complete amino acid sequence for brain beta spectrin (beta fodrin): relationship to globin sequences. Brain Res. Mol. Brain Res. 18, 87–99.PubMedGoogle Scholar
  83. 83.
    Wu, S., Sangerman, J., Li, M., Brough, G. H., Goodman, S. R., and Stevens, T. (2001) Essential control of an endothelial cell ISOC by the sectrin membrane skeleton. J. Cell Biol. 154, 1225–1233.PubMedGoogle Scholar
  84. 84.
    Brough, G. H., Wu, S., Cioffi, D., Moore, T. M., Li, M., Dean, N., et al. (2001) Contribution of endogenously expressed Trp-1 to a Ca2+-selective store operated Ca2+ entry pathway. FASEB J. 15, 1727–1727.PubMedGoogle Scholar
  85. 85.
    Zimmer, W. E., Zhao, Y., Sikorski, A. F., Critz, S. D., Sangerman, J., Elferink, L. A., et al. (2000) The domain of brain beta-spectrin responsible for synaptic vesicle association is essential for synaptic transmission. Brain Res. 881, 18–27.PubMedGoogle Scholar
  86. 86.
    Wu, S., Moore, T. M., Brough, G. H., Whitt, S. R., Chinkers, M., Li, M., et al. (2000) Cyclic nucleotide-gated channels mediate membrane depolarization following activation of store-operated calcium entry in endothelial cells. J. Biol. Chem. 275, 18,887–18,896.Google Scholar
  87. 87.
    Fasolato, C. and Nilius, B. (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch. 436, 69–74.PubMedGoogle Scholar
  88. 88.
    Hoth, M. and Penner, R. (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356.PubMedGoogle Scholar
  89. 89.
    Clapham, D. E. (1996) IRP is cracked but is CRAC TRP? Neuron 16, 1069–1072.PubMedGoogle Scholar
  90. 90.
    Yue, L., Peng, J. B., Hediger, M. A., and Clapham, D. E. (2001) CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410, 705–709.PubMedGoogle Scholar
  91. 91.
    Niemeyer, B. A., Suzuki, E., Scott, K., Jalink, K., and Zuker, C. S. (1996) The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85, 651–659.PubMedGoogle Scholar
  92. 92.
    Hardie, R. C. and Minke, B. (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8, 643–651.PubMedGoogle Scholar
  93. 93.
    Vaca, L., Sinkins, W. G., Hu, Y., Kunze, D. L., and Schilling, W. P. (1994) Activation of recombinant trp by thapsigargin in Sf9 insect cells. Am. J. Physiol. 267, C1501-C1505.PubMedGoogle Scholar
  94. 94.
    Acharya, J. K., Jalink, K., Hardy, R. W., Hartenstein, V., and Zuker, C. S. (1997) InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18, 881–887.PubMedGoogle Scholar
  95. 95.
    Raghu, P., Colley, N. J., Webel, R., James, T., Hasan, G., Danin, M., et al. (2000) Normal phototransduction in Drosophila photoreceptors lacking an InsP(3) receptor gene. Mol. Cell Neurosci. 15, 429–445.PubMedGoogle Scholar
  96. 96.
    Sullivan, K. M., Scott, K., Zuker, C. S., and Rubin, G. M. (2000) The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 5942–5947.PubMedGoogle Scholar
  97. 97.
    Hu, Y., Vaca, L., Zhu, X., Birnbaumer, L., Kunze, D. L., and Schilling, W. P. (1994) Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of Drosophila. Biochem. Biophys. Res. Commun. 201, 1050–1056.PubMedGoogle Scholar
  98. 98.
    Sinkins, W. G., Vaca, L., Hu, Y., Kunze, D. L., and Schilling, W. P. (1996) The COOH-terminal domain of Drosophila TRP channels confers thapsigargin sensitivity. J. Biol. Chem. 271, 2955–2960.PubMedGoogle Scholar
  99. 99.
    Vannier, B., Peyton, M., Boulay, G., Brown, D., Qin, N., Jiang, M., et al. (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc. Natl. Acad. Sci. USA 96, 2060–2064.PubMedGoogle Scholar
  100. 100.
    Birnbaumer, L., Zhu, X., Jiang, M., Boulay, G., Peyton, M., Vannier, B., et al. (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl. Acad. Sci. USA 93, 15,195–15,202.Google Scholar
  101. 101.
    Sinkins, W. G., Estacion, M., and Schilling, W. P. (1998) Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem. J. 331, 331–339.PubMedGoogle Scholar
  102. 102.
    Zhu, X., Jiang, M., Peyton, M., Boulay, G., Hurst, R., Stefani, E., et al. (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85, 661–671.PubMedGoogle Scholar
  103. 103.
    Zitt, C., Zobel, A., Obukhov, A. G., Harteneck, C., Kalkbrenner, F., Luckhoff, A., et al. (1996) Cloning and functional expression of a human Ca2+ permeable cation channel activated by calcium store depletion. Neuron 16, 1189–1196.PubMedGoogle Scholar
  104. 104.
    Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W. F., Romanin, C., Zhu, M. X., et al. (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+ sensitive cation channels. J. Biol. Chem. 275, 27,799–27,805.Google Scholar
  105. 105.
    Warnat, J., Philipp, S., Zimmer, S., Flockerzi, V., and Cavalie, A. (1999) Phenotype of a recombinant store-operated channel: highly selective permeation of Ca2+. J. Physiol. 518, 631–638.PubMedGoogle Scholar
  106. 106.
    Philipp, S., Trost, C., Warnat, J., Rautmann, J., Himmerkus, N., Schroth, G., et al. (2000) TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J. Biol. Chem. 275, 23,965–23,972.Google Scholar
  107. 107.
    Freichel, M., Suh, S. H., Pfeifer, A., Schweig, U., Trost, C., Weissgerber, P., et al. (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/-mice. Nat. Cell Biol. 3, 121–127.PubMedGoogle Scholar
  108. 108.
    Schaefer, M., Plant, T. D., Obukhov, A. G., Hofmann, T., Gudermann, T., and Schultz, G. (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17,517–17,526.Google Scholar
  109. 109.
    Wes, P. D., Chevesich, J., Jeromin, A., Rosenberg, C., Stetten, G., and Montell, C. (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl. Acad. Sci. USA 92, 9652–9656.PubMedGoogle Scholar
  110. 110.
    Lockwich, T. P., Liu, X., Singh, B. B., Jadlowiec, J., Weiland, S., and Ambudkar, I. S. (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J. Biol. Chem. 275, 11,934–11,942.Google Scholar
  111. 111.
    Tang, J., Lin, Y., Zhang, Z., Tikunova, S., Birnbaumer, L., and Zhu, M. X. (2001) Identification of common binding sites for calmodulin and IP3 receptors on the carboxyltermini of Trp channels. J. Biol. Chem. 4, 4.Google Scholar
  112. 112.
    Tang, Y., Tang, J., Chen, Z., Trost, C., Flockerzi, V., Li, M., et al. (2000) Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J. Biol. Chem. 275, 37,559–37,564.Google Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Department of Pharmacology, College of MedicineUniversity of South AlabamaMobile

Personalised recommendations