Cell Biochemistry and Biophysics

, Volume 36, Issue 2–3, pp 209–214 | Cite as

Ion transport induced by proteinase-activated receptors (PAR2) in colon and airways

  • Karl Kunzelmann
  • Rainer Schreiber
  • jens König
  • Marcus Mall
Review Article

Abstract

Protease-activated receptors type 2 (PAR2) are activated by serine proteases like trypsin and mast cell tryptase. The function and physiological significance of PAR2 receptors is poorly understood, but recent studies suggest a role during inflammatory processes in both airways and intestine. PAR2 receptors are also likely to participate in the control of ion transport in these tissues. We demonstrate that stimulation of PAR2 in airways and intestine significantly enhanced ion transport. Trypsin induced CI secretion in both airways and intestine when added to the basolateral but not to the luminal side of these tissues. In both airways and intestine, stimulation of ion transport was largely dependent on the increase in intracellular Ca2+. Effects of trypsin were largely reduced by basolateral bumetanide and barium and by trypsin inhibitor. Thrombin, an activator of proteinase-activated receptors types 1, 3, and 4 had no effects on equivalent short-circuit current in either airways or intestine. Expression of PAR2 in colon and airways was further confirmed by reverse transcription-polymerase chain reaction. We postulate that these receptors play a significant role in the regulation of electrolyte transport, which might be important during inflammatory diseases of airways and intestine.

Index Entries

Protease-activated receptor type 2 PAR2 colon airways electrolyte transport CFTR inflammation trypsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dery, O., Corvera, C. U., Steinhoff, M., and Bunnett, N. W. (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am. J. Physiol. 274, C1429-C1452.PubMedGoogle Scholar
  2. 2.
    Lindner, J. R., Kahn, M. L., Coughlin, S. R., Sambrano, G. R., Schauble, E., Bernstein, D., et al. (2000) Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J. Immunol. 165, 6504–6510.PubMedGoogle Scholar
  3. 3.
    Nystedt, S., Emilsson, K., Wahlestedt, C., and Sundelin, J. (1994) Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA 91, 9208–9212.PubMedCrossRefGoogle Scholar
  4. 4.
    Bohm, S. K., Kong, W., Bromme, D., Smeekens, S. P., Anderson, D. C., Connolly, A., et al. (1996) NA, Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J. 314, 1009–1016.PubMedGoogle Scholar
  5. 5.
    D'Andrea, M. R., Derian, C. K., Leturcq, D., Baker, S. M., Brunmark, A., Ling, P., et al. (1998) Characterization of protease-activated receptor 2 immunoreactivity in normal human tissues. J. Histochem. Cytochem. 46, 157–164.PubMedGoogle Scholar
  6. 6.
    Cocks, T. M., Fong, B., Chow, J. M., Anderson, G. P., Frauman, A. G., Goldie, R. G., et al. (1999) A protective role for protease-activated receptors in the airways. Nature 398, 156–160.PubMedCrossRefGoogle Scholar
  7. 7.
    Nguyen, T. D., Moody, M. W., Steinhoff, M., Okolo, C., Koh, D. S., and Bunnett, N. W. (1999) Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J. Clin Invest. 103, 261–269.PubMedCrossRefGoogle Scholar
  8. 8.
    Kong, W., McConalogue, K., Khitin, L. M., Hollenberg, M. D., Payan, D. G., Bohm, S. K., et al. (1997) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. USA 94, 8884–8889.PubMedCrossRefGoogle Scholar
  9. 9.
    Vergnolle, N., Macnaughton, W. K., Al-Ani, B., Saifeddine, M., Wallace, J. L., and Hollenberg, M. D. (2000) Proteinase-activated receptor 2 (PAR2)-activating peptides: identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc. Natl. Acad. Sci. USA 95, 7766–7771.CrossRefGoogle Scholar
  10. 10.
    Chow, J. M., Moffatt, J. D., and Cocks, T. M. Effect of protease-activated receptor (PAR)-1,-2 and-4-activating peptides, thrombin and trypsin in rat isolated airways. Br. J. Pharmacol. 131, 1584–1591.Google Scholar
  11. 11.
    Buresi, M. C., Schleihauf, E., Vergnolle, N., Buret, A., Wallace, J. L., Hollenberg, M. D., et al. (2001) Protease-activated receptor-1 stimulates Ca(2+)-dependent Cl(−) secretion in human intestinal epithelial cells. Am. J. Physiol. 281, G323-G332.Google Scholar
  12. 12.
    Levo, Y. and Livni, N. (1978) Mast-cell degranulation in Crohn's disease. Lancet 1, 1262.PubMedCrossRefGoogle Scholar
  13. 13.
    Rao, S. N. (1973) Mast cells as a component of the granuloma in Crohn's disease. J. Pathol. 109, 79–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Crowe, S. E., Luthra, G. K., and Perdue, M. H. (1997) Mast cell mediated ion transport in intestine from patients with and without inflammatory bowel disease. Gut 41, 785–792.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Karl Kunzelmann
    • 1
  • Rainer Schreiber
    • 1
  • jens König
    • 1
  • Marcus Mall
    • 2
  1. 1.School of Biomedical Sciences, Department of Physiology & PharmacologyUniversity of QueenslandSt. LuciaAustralia
  2. 2.Albert-Ludwigs-Universität FreiburgUniversitäts-KinderklinikFreiburgGermany

Personalised recommendations