Cell Biochemistry and Biophysics

, Volume 34, Issue 1, pp 1–16 | Cite as

Transcriptional regulation of c-fms gene expression

  • Yue Xie
  • Changmin Chen
  • David A. Hume
Original Article


Cell Biochemistry Biophysics Volume Mononuclear Phagocyte Osteopetrosis Lewis Lung Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crocker, P. R. and Gordon, S. (1985) Isolation and characterization of resident stromal macrophages and haemopoietic cell clusters from mouse bone marrow. J. Exp. Med. 162, 993–1014.PubMedCrossRefGoogle Scholar
  2. 2.
    Denkers, I. A. M., Beelen, R. H. J., Ossenkoppele, G. J., and Langenhuysen, M. M. A. C. (1992) Differences of cellular composition and adhension molecule expression in “leukemic” as compared with “normal” human long-term bone marrow cultures. Ann. Hematol. 64, 210–216.PubMedCrossRefGoogle Scholar
  3. 3.
    Fibbe, W. E., van Damme, J., Billiau, A., Voogt, P. J., Duinkerken, N., Kluck, P. M., and Falkenburg, J. H. (1986) Interleukin-1 (22-K factor) induces release of granulocyte-macrophage colony-stimulating activity from human mononuclear phagocytes. Blood 68, 1316–1321.PubMedGoogle Scholar
  4. 4.
    Vogt, C., Pentz, S., and Rich, I. N. (1989) A role for the macrophage in normal hemopoiesis: III. In vitro and in vivo erythropoietin gene expression in macrophages detected by in situ hybridization. Exp. Hematol. 17, 391–397.PubMedGoogle Scholar
  5. 5.
    van den Heuvel, R., Mathieu, E., Schoeters, G., Leppens, H., and Vanderborght, O. (1991) Stromal cells from murine developing hemopoietic organs: comparison of colony-forming unit of fibroblasts and long-term cultures. Int. J. Dev. Biol. 35, 33–41.PubMedGoogle Scholar
  6. 6.
    Metcalf, D. (1985) Multi-CSF-dependent colony formation by cells of a murine hemopoietic cell line: specificity and action of multi-CSF. Blood 65, 357–362.PubMedGoogle Scholar
  7. 7.
    Metcalf, D. (1989) The molecular control of cell division, differentiation, commitment and motivation in haemopoietic cells. Nature 339, 27–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Dinarello, C. A. (1994) The biological properties of interleukin-1. Eur. Cytokine Netw. 5, 517–531.PubMedGoogle Scholar
  9. 9.
    Broxmeyer, H. E., Maze, R., Miyazawa, K., Carow, C., Hendrie, P. C., Cooper, S., Hangoc, G., Vadhan-Raj, S., and Lu, L. (1991) The kit receptor and its ligand, steel factor, as regulators of hemopoiesis. Cancer Cells 3, 480–487.PubMedGoogle Scholar
  10. 10.
    Breen, F. N., Hume, D. A., and Weidemann, M. J. (1990) The effects of interleukin 3 (IL3) on cells responsive to macrophage colony-stimulating factor (CSF-1) in liquid bone marrow culture. Br. J. Haematol. 74, 138–147.PubMedGoogle Scholar
  11. 11.
    Breen, F. N., Hume, D. A., and Weidemann, M. J. (1991) Interactions between granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor and gamma interferon lead to enhanced proliferation of murine macrophage progenitor cells. J. Immunol. 147, 1542–1547.PubMedGoogle Scholar
  12. 12.
    Bartelmez, S. H., Bradley, T. R., Bertoncello, I., Mochizuki, D. Y., Tushinski, R. J., Stanley, E. R., Hapel, A. J., Young, I. G., Kriegler, A. B., and Hodgson, G. S. (1989) Interleukin 1 plus interleukin 3 plus colony-stimulating factor 1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp. Hematol. 17, 240–245.PubMedGoogle Scholar
  13. 13.
    Warren, M. K., and Vogel, S. N. (1985) Bone marrow-derived macrophages: development and regulation of differentiation markers by colony-stimulating factor and interferons. J. Immunol. 134, 982–989.PubMedGoogle Scholar
  14. 14.
    Roth, P., and Stanley, E. R. (1992) The biology of CSF-1 and its receptor. Curr. Top. Microbiol. Immunol. 181, 141–167.PubMedGoogle Scholar
  15. 15.
    Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. J., Ahmed, A. A., Sell, K. W., Pollard, J. W., and Stanley, E. R. (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828–4832.PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., Shultz, L. D., and Nishikawa, S. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.PubMedCrossRefGoogle Scholar
  17. 17.
    Felix, R., Cecchini, M. G., Hofstetter, W., Elford, P. R., Stutzer, A., and Fleisch, H. (1990) Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J. Bone Miner. Res. 5, 781–789.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiktor-Jedrzejczak, W., Ratajczak, M. Z., Ptasznik, A., Sell, K. W., Ahmed-Ansari, A., and Ostertag, W. (1992) CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages. Exp. Hematol. 20, 1004–1010.PubMedGoogle Scholar
  19. 19.
    Cecchini, M. G., Dominguez, M. G., Mocci, S., Wetterwald, A., Felix, R., Fleisch, H., Chisholm, O., Hofstetter, W., Pollard, J. W., and Stanley, E. R. (1994) Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120, 1357–1372.PubMedGoogle Scholar
  20. 20.
    Begg, S. K., Radley, J. M., Pollard, J. W., Chisholm, O. T., Stanley, E. R., and Bertoncello, I. (1993) Delayed hematopoietic development in osteopetrotic (op/op) mice. J. Exp. Med. 177, 237–242.PubMedCrossRefGoogle Scholar
  21. 21.
    Witmer-Pack, M. D., Hughes, D. A., Schuler, G., Lawson, L., McWilliam, A., Inaba, K., Steinman, R. M., and Gordon, S. (1993) Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J. Cell. Sci. 104, 1021–1029.PubMedGoogle Scholar
  22. 22.
    Hume, D. A., Monkley, S. J., and Wainwright, B. J. (1995) Detection of c-fms protooncogene in early mouse embryos by whole mount in situ hybridization indicates roles for macrophages in tissue remodelling. Br. J. Haematol. 90, 939–942.PubMedGoogle Scholar
  23. 23.
    Takatsuka, H., Umezu, H., Hasegawa, G., Usuda, H., Ebe, Y., Naito, M., and Shultz, L. D. (1998) Bone remodeling and macrophage differentiation in osteopetrosis (op) mutant mice defective in the production of macrophage colony-stimulating factor. J. Submicrosc. Cytol. Pathol. 30, 239–247.PubMedGoogle Scholar
  24. 24.
    Niida, S., Kaku, M., Amano, H., Yoshida, H., Kataoka, H., Nishikawa, S., Tanne, K., Maeda, N., Nishikawa, S., and Kodama, H. (1999) Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J. Exp. Med. 190, 293–298.PubMedCrossRefGoogle Scholar
  25. 25.
    Reddy, M. A., Yang, B. S., Xie, Y., Barnett, C. J., Ross, I. L., Sweet, M. J., Hume, D. A., and Ostrowski, M. C. (1994) Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J. Exp. Med. 180, 2309–2319.PubMedCrossRefGoogle Scholar
  26. 26.
    Weber, B., Horiguchi, J., Luebbers, R., Sherman, M., and Kufe, D. (1989) Posttranscriptional stabilization of c-fms mRNA by a labile protein during human monocytic differentiation. Mol. Cell. Biol. 9, 769–775.PubMedGoogle Scholar
  27. 27.
    Gliniak, B. C. and Rohrschneider, L. R. (1990) Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF. Cell 63, 1073–1083.PubMedCrossRefGoogle Scholar
  28. 28.
    Gusella, G. L., Ayroldi, E., Espinoza-Delgado, I., and Varesio, L. (1990) Lipopolysaccharide, but not IFN-gamma, down-regulates c-fms mRNA proto-oncogene expression in murine macrophages. J. Immunol. 144, 3574–3580.PubMedGoogle Scholar
  29. 29.
    Stone, R. M., Imamura, K., Datta, R., Sherman, M. L., and Kufe, D. W. (1990) Inhibition of phorbol ester-induced monocytic differentiation and c-fms gene expression by dexamethasone: potential involvement of arachidonic acid metabolites. Blood 76, 1225–1232.PubMedGoogle Scholar
  30. 30.
    Sapi, E., Flick, M. B., Gilmore-Hebert, M., Rodov, S., and Kacinski, B. M. (1995) Transcriptional regulation of the c-fms (CSF-1R) proto-oncogene in human breast carcinoma cells by glucocorticoids. Oncogene 10, 529–542.PubMedGoogle Scholar
  31. 31.
    Chambers, S. K., Gilmore-Hebert, M., Wang, Y., Rodov, S., Benz, E. J. Jr., and Kacinski, B. M. (1993) Posttranscriptional regulation of colony-stimulating factor-1 (CSF-1) and CSF-1 receptor gene expression during inhibition of phorbol-ester-induced monocytic differentiation by dexamethasone and cyclosporin A: potential involvement of a destabilizing protein. Exp. Hematol. 21, 1328–1334.PubMedGoogle Scholar
  32. 32.
    Myers, M. J., Ghildyal, N., and Schook, L. B. (1995) Endotoxin and interferon-gamma differentially regulate the transcriptional levels of proto-oncogenes and cytokine genes during the differentiation of colony-stimulating factor type-1-derived macrophages. Immunology 85, 318–324.PubMedGoogle Scholar
  33. 33.
    Biskobing, D. M., Fan, D., and Rubin, J. (1997) c-fms mRNA is regulated posttranscriptionally by 1,25(OH)2D3 in HL-60 cells. Calcif. Tissue Int. 61, 205–209.PubMedCrossRefGoogle Scholar
  34. 34.
    Arceci, R. J., Pampfer, S., and Pollard, J. W. (1992) Expression of CSF-1 / c-fms and SF/c-kit mRNA during preimplantation mouse development. Dev. Biol. 151, 1–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Regenstreif, L. J., and Rossant, J. (1989) Expression of the c-fms proto-oncogene and of the cytokine, CSF-1, during mouse embryogenesis. Dev. Biol. 133, 284–294.PubMedCrossRefGoogle Scholar
  36. 36.
    Arceci, R. J., Shanahan, F., Stanley, E. R., and Pollard, J. W. (1989) Temporal expression and location of colony-stimulating factor 1 (CSF-1) and its receptor in the female reproductive tract are consistent with CSF-1-regulated placental development. Proc. Natl. Acad. Sci. USA 86, 8818–8822.PubMedCrossRefGoogle Scholar
  37. 37.
    Azuma, C., Saji, F., Kimura, T., Tokugawa, Y., Takemura, M., Miki, M., Ono, M., and Tanizawa, O. (1991) The gene expression of macrophage colony-stimulating factor (MCSF) and MCSF receptor in the human myometrium during pregnancy: regulation by sex steroid hormone. J. Steroid Biochem. Mol. Biol. 39, 883–888.PubMedCrossRefGoogle Scholar
  38. 38.
    Azuma, C., Saji, F., Kimura, T., Tokugawa, Y., Takemura, M., Samejima, Y., and Tanizawa, O. (1990) Steroid hormones induce macrophage colony-stimulating factor (MCSF) and MCSF receptor mRNAs in the human endometrium. J. Mol. Endocrinol. 5, 103–108.PubMedCrossRefGoogle Scholar
  39. 39.
    Pampfer, S., Daiter, E., Barad, D., and Poliard, J. W. (1992) Expression of the colony-stimulating factor-1 receptor (c-fms proto-oncogene product) in the human uterus and placenta. Biol. Reprod. 46, 48–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Jokhi, P. P., Chumbley, G., King, A., Gardner, L., and Loke, Y. W. (1993) Expression of the colony stimulating factor-1 receptor (c-fms product) by cells at the human uteroplacental interface. Lab. Invest. 68, 308–320.PubMedGoogle Scholar
  41. 41.
    Saji, F., Azuma, C., Kimura, T., Koyama, M., Ohashi, K., and Tanizawa, O. (1990) Gene expression of macrophage colony-stimulating factor and its receptor in human placenta and decidua. Am. J. Reprod. Immunol. 24, 99–104.PubMedGoogle Scholar
  42. 42.
    Marks, S. C. Jr., and Lane, P. W. (1976) Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J. Hered. 67, 11–18.PubMedGoogle Scholar
  43. 43.
    Pollard, J. W., Hunt, J. S., Wiktor-Jedrzejczak, W., and Stanley, E. R. (1991) A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev. Biol. 148, 273–283.PubMedCrossRefGoogle Scholar
  44. 44.
    Lichanska, A. M., Browne, C. M., Henkel, G. W., Murphy, K. M., Ostrowski, M. C., McKercher, S. R., Maki, R. A., and Hume, D. A. (1999) Differentiation of the embryonic mononuclear phagocyte system. The role of transcription factor PU.1. Blood, in press.Google Scholar
  45. 45.
    Morris, L., Graham, C. F., and Gordon, S. (1991) Macrophages in the haemopoietic and other tissues of the developing mouse detected by monoclonal antibody F4/80. Development 112, 517–526.PubMedGoogle Scholar
  46. 46.
    Aperlo, C., Sevilla, L., Guerin, S., Pognonec, P., and Boulukos, K. E. (1998) Synergistic effects of colony-stimulating factor 1 and leukemia inhibitory factor in inducing early myeloid cell differentiation. Cell Growth Differ. 9, 929–937.PubMedGoogle Scholar
  47. 47.
    Hass, R., Prudovsky, I., and Kruhoffer, M. (1997) Differential effects of phorbol ester on signaling and gene expression in human leukemia cells. Leuk. Res. 21, 589–594.PubMedCrossRefGoogle Scholar
  48. 48.
    Byrne, P. V., Guilbert, L. J., and Stanley, E. R. (1981) Distribution of cells bearing receptors for a colony-stimulating factor (CSF-1) in murine tissues. J. Cell. Biol. 91, 848–853.PubMedCrossRefGoogle Scholar
  49. 49.
    Guilbert, L. J. and Stanley, E. R. (1980) Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells. J. Cell. Biol. 85, 153–159.PubMedCrossRefGoogle Scholar
  50. 50.
    Cohen, P. E., Nishimura, K., Zhu, L., and Pollard, J. W. (1999) Macrophages: important accessory cells for reproductive function. J. Leukoc. Biol. 66, 765–772.PubMedGoogle Scholar
  51. 51.
    Hofstetter, W., Wetterwald, A., Cecchini, M. C., Felix, R., Fleisch, H., and Mueller, C. (1992) Detection of transcripts for the receptor for macrophage colony-stimulating factor, c-fms, in murine osteoclasts. Proc. Natl. Acad. Sci. USA 89, 9637–9641.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang, S., Zhang, Y., Rodriguiz, R. M., Ries, W. L., and Key, L. L. Jr. (1996) Functions of the M-CSF receptor on osteoclasts. Bone 18, 355–360.PubMedCrossRefGoogle Scholar
  53. 53.
    Tanaka, S., Takahashi, N., Udagawa, N., Tamura, T., Akatsu, T., Stanley, E. R., Kurokawa, T., and Suda, T. (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J. Clin. Invest. 91, 257–263.PubMedGoogle Scholar
  54. 54.
    Cecchini, M. G., Hofstetter, W., Halasy, J., Wetterwald, A., and Felix, R. (1997) Role of CSF-1 in bone and bone marrow development. Mol. Reprod. Dev. 46, 75–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Felix, R., Hofstetter, W., Wetterwald, A., Cecchini, M. G., and Fleisch, H. (1994) Role of colony-stimulating factor-1 in bone metabolism. J. Cell. Biochem. 55, 340–349.PubMedCrossRefGoogle Scholar
  56. 56.
    Quinn, J. M., Elliott, J., Gillespie, M. T., and Martin, T. J. (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139, 4424–4427.PubMedCrossRefGoogle Scholar
  57. 57.
    Nagai, M. and Sato, N. (1999) Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem. Biophys. Res. Commun. 257, 719–723.PubMedCrossRefGoogle Scholar
  58. 58.
    Edwards, M., Sarma, U., and Flanagan, A. M. (1998) Macrophage colony-stimulating factor increases bone resorption by osteoclasts disaggregated from human fetal long bones. Bone 22, 325–329.PubMedCrossRefGoogle Scholar
  59. 59.
    Baker, A. H., Ridge, S. A., Hoy, T., Cachia, P. G., Culligan, D., Baines, P., Whittaker, J. A., Jacobs, A., and Padua, R. A. (1993) Expression of the colony-stimulating factor 1 receptor in B lymphocytes. Oncogene 8, 371–378.PubMedGoogle Scholar
  60. 60.
    Murase, S. and Hayashi, Y. (1998) Expression pattern and neurotrophic role of the c-fms proto-oncogene M-CSF receptor in rodent Purkinje cells. J. Neurosci. 18, 10,481–10,492.Google Scholar
  61. 61.
    Perry, V. H., Hume, D. A., and Gordon, S. (1985) Immunohistochemical localisation of macrophages and microglia in the developing mouse brain. Neuroscience 173, 313–326.CrossRefGoogle Scholar
  62. 62.
    Sawada, M., Suzumura, A., Yamamoto, H., and Marunouchi, T. (1990) Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res. 509, 119–124.PubMedCrossRefGoogle Scholar
  63. 63.
    Sawada, M., Itoh, Y., Suzumura, A., and Marunouchi, T. (1993) Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci. Lett. 160, 131–134.PubMedCrossRefGoogle Scholar
  64. 64.
    Sapi, E., Flick, M. B., Rodov, S., Carter, D., and Kacinski, B. M. (1998) Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells. J. Soc. Gynecol. Investig. 5, 94–101.PubMedCrossRefGoogle Scholar
  65. 65.
    Pollard, J. W. and Hennighausen, L. (1994) Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc. Natl. Acad. Sci. USA 91, 9312–9316.PubMedCrossRefGoogle Scholar
  66. 66.
    Rambaldi, A., Wakamiya, N., Vellenga, E., Horiguchi, J., Warren, M. K., Kufe, D., and Griffin, J. D. (1988) Expression of the macrophage colony-stimulating factor and c-fms gene in human acute myeloblastic leukemia cells. J. Clin. Invest. 81, 1030–1035.PubMedCrossRefGoogle Scholar
  67. 67.
    Kacinski, B. M., Carter, D., Mittal, K., Yee, L. D., Scata, K. A., Donofrio, L., Chambers, S. K., Wang, K. I., Yang-Feng, T., Rohrschneider, L. R., and Rothwell, V. M. (1990) Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am. J. Pathol. 137, 135–147.PubMedGoogle Scholar
  68. 68.
    Kacinski, B. M., Scata, K. A., Carter, D., Yee, L. D., Sapi, E., King, B. L., Chambers, S. K., Jones, M. A., Pirro, M. H., Stanley, E. R., and Rohrschneider, L. R. (1991) Fms (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene 6, 941–952.PubMedGoogle Scholar
  69. 69.
    Paietta, E., Racezskis, J., Stanley, E. R., Andreeff, M., Papenhausen, P., and Wiernik, P. (1990) Expression of the macrophage growth factor, CSF-1 and its receptor c-fms by a Hodgkin’s disease-derived cell line and its variants. Cancer Res. 50, 2049–2055.PubMedGoogle Scholar
  70. 70.
    Baiocchi, G., Kavanagh, J. J., Talpaz, M., Wharton, J. T., Gutterman, J. U., and Kurzrock, R. (1991) Expression of the macrophage colony-stimulating factor and its receptor in gynecologic malignancies. Cancer 67, 990–996.PubMedCrossRefGoogle Scholar
  71. 71.
    Storga, D., Pecina-Slaus, N., Pavelic, J., Pavelic, Z. P., and Pavelic, K. (1992) c-fms is present in primary tumours as well as in their metastases in bone marrow. Int. J. Exp. Pathol. 73, 527–533.PubMedGoogle Scholar
  72. 72.
    Leiserowitz, G. S., Harris, S. A., Subramaniam, M., Keeney, G. L., Podratz, K. C., and Spelsberg, T. C. (1993) The proto-oncogene c-fms is overexpressed in endometrial cancer. Gynecol Oncol. 49, 190–196.PubMedCrossRefGoogle Scholar
  73. 73.
    Till, K. J., Lopez, A., Slupsky, J., and Cawley, J. C. (1993) C-fms protein expression by B-cells, with particular reference to the hairy cells of hairy-cell leukaemia. Br. J. Haematol. 83, 223–231.PubMedGoogle Scholar
  74. 74.
    Burthem, J., Baker, P. K., Hunt, J. A., and Cawley, J. C. (1994) The function of c-fms in hairy-cell leukemia: macrophage colony-stimulating factor stimulates hairy-cell movement. Blood 83, 1381–1389.PubMedGoogle Scholar
  75. 75.
    Keshava, N., Gubba, S., and Tekmal, R. R. (1999) Overexpression of macrophage colony-stimulating factor (CSF-1) and its receptor, c-fms, in normal ovarian granulosa cells leads to cell proliferation and tumorigenesis. J. Soc. Gynecol. Invest. 6, 41–49.CrossRefGoogle Scholar
  76. 76.
    Tang, R., Beuvon, F., Ojeda, M., Mosseri, V., Pouillart, P., and Scholl, S. (1992) M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes? J. Cell. Biochem. 50, 350–356.PubMedCrossRefGoogle Scholar
  77. 77.
    Scholl, S. M., Pallud, C., Beuvon, F., Hacene, K., Stanley, E. R., Rohrschneider, L., Tang, R., Pouillart, P., and Lidereau, R. (1994) Anticolony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J. Natl. Cancer Inst. 86, 120–126.PubMedCrossRefGoogle Scholar
  78. 78.
    Bruckner, A., Filderman, A. E., Kirchheimer, J. C., Binder, B. R., and Remold, H. G. (1992) Endogenous receptor-bound urokinase mediates tissue invasion of the human lung carcinoma cell lines A549 and Calu-1. Cancer Res. 52, 3043–3047.PubMedGoogle Scholar
  79. 79.
    Filderman, A. E., Bruckner, A., Kacinski, B. M., Deng, N., and Remold, H. G. (1992) Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res. 52, 3661–3666.PubMedGoogle Scholar
  80. 80.
    Rettenmier, C. W., Roussel, M. F., Ashmun, R. A., Ralph, P., Price, K., and Sherr, C. J. (1987) Synthesis of membrane-bound colony-stimulating factor 1 (CSF-1) and downmodulation of CSF-1 receptor in NIH3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes. Mol. Cell. Biol. 7, 2378–2387.PubMedGoogle Scholar
  81. 81.
    Roussel, M. F., Dull, T. J., Rettenmier, C. W., Ralph, P., Ullrich, A., and Sherr, C. J. (1987) Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature. 325, 549–552.PubMedCrossRefGoogle Scholar
  82. 82.
    van der Geer, P. and Hunter, T. (1993) Mutation of Tyr697, a GRB2-binding site, and Tyr721, a PI 3-kinase binding site, abrogates signal transduction by the murine CSF-1 receptor expressed in Rat-2 fibroblasts. EMBO J. 12, 5161–5172.PubMedGoogle Scholar
  83. 83.
    Favot, P., Xie, Y., and Hume, D. A. (1995) Regulation of the c-fms promoter in murine tumour cell lines. Oncogene 11, 1371–1381.PubMedGoogle Scholar
  84. 84.
    Roberts, W. M., Shapiro, L. H., Ashmun, R. A., and Look, A. T. (1992) Transcription of the human colony-stimulating factor-1 receptor gene is regulated by separate tissue-specific promoters. Blood 79, 586–593.PubMedGoogle Scholar
  85. 85.
    Xie, Y., Favot, P., Dunn, T. L., Cassady, A. I., and Hume, D. A. (1993) Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by aconstitutive promoter and tissue-specific transcription elongation. Mol. Cell. Biol. 13, 3191–3201.Google Scholar
  86. 86.
    Visvader, J. and Verma, I. M. (1989) Differential transcription of exon 1 of the human c-fms gene in placental trophoblasts and monocytes. Mol. Cell. Biol. 9, 1336–1341.PubMedGoogle Scholar
  87. 87.
    Sapi, E. and Kacinski, B. M. (1999) The role of CSF-1 in normal and neoplastic breast physiology. Proc. Soc. Exp. Biol. Med. 220, 1–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Sapi, E., Flick, M. B., and Kacinski, B. M. (1994) The first intron of human c-fms proto-oncogene contains a processed pseudogene (RPL7P) for ribosomal protein L7. Genomics 22, 641–645.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang, D. E., Hetherington, C. J., Chen, H. M., and Tenen, D. G. (1994) The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol. Cell. Biol. 14, 373–381.PubMedGoogle Scholar
  90. 90.
    Ross, I. L., Dunn, T. L., Xie, Y., Roy, S., Barnett, C. J., and Hume, D. A. (1994) Comparison of the expression and function of the transcription factor PU.1 (Spi-1 proto-oncogene) between murine macrophages and B lymphocytes. Oncogene 9, 121–132.PubMedGoogle Scholar
  91. 91.
    Ross, I. L., Xie, Y., Ostrowski, M. C., and Hume, D. A. (1998) Interaction between PU.1 and another Ets family transcription factor promotes macrophage-specific basal transcription initiation. J. Biol. Chem. 273, 6662–6669.PubMedCrossRefGoogle Scholar
  92. 92.
    Helftenbein, G., Krusekopf, K., Just, U., Cross, M., Ostertag, W., Niemann, H., and Tamura, T. (1996) Transcriptional regulation of the c-fms proto-oncogene mediated by granulocyte/macrophage colony-stimulating factor (GM-CSF) in murine cell lines. Oncogene 12, 931–935.PubMedGoogle Scholar
  93. 93.
    Collart, M. A., Tourkine, N., Belin, D., Vassalli, P., Jeanteur, P., and Blanchard, J. M. (1991) c-fos gene transcription in murine macrophages is modulated by a calcium-dependent block to elongation in intron 1. Mol. Cell. Biol. 11, 2826–2831.PubMedGoogle Scholar
  94. 94.
    Bentley, D. L., and Groudine, M. (1986) A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321, 702–706.PubMedCrossRefGoogle Scholar
  95. 95.
    Bender, T. P., Thompson, C. B., and Kuehl, W. M. (1987) Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. Science 237, 1473–1476.PubMedCrossRefGoogle Scholar
  96. 96.
    Watson, R. J. (1988) A transcriptional arrest mechanism involved in controlling constitutive levels of mouse c-myb mRNA. Oncogene 2, 267–272.PubMedGoogle Scholar
  97. 97.
    Haley, J. D. and Waterfield, M. D. (1991) Contributory effects of de novo transcription and premature transcript termination in the regulation of human epidermal growth factor receptor proto-oncogene RNA synthesis. J. Biol. Chem. 266, 1746–1753.PubMedGoogle Scholar
  98. 98.
    Chen, Z., Harless, M. L., Wright, D. A., and Kellems, R. E. (1990) Identification and characterization of transcriptional arrest sites in exon 1 of the human adenosine deaminase gene. Mol. Cell. Biol. 10, 4555–4564.PubMedGoogle Scholar
  99. 99.
    Gisselbrecht, S., Fichelson, S., Sola, B., Bordereaux, D., Hampe, A., Andre, C., Galibert, F., and Tambourin, P. (1987) Frequent c-fms activation by proviral insertion in mouse myeloblastic leukaemias. Nature 329, 259–261.PubMedCrossRefGoogle Scholar
  100. 100.
    Moorwood, K., Charles, A. K., Salpekar, A., Wallace, J. I., Brown, K. W., and Malik, K. (1998) Antisense WT1 transcription parallels sense mRNA and protein expression in fetal kidney and can elevate protein levels in vitro. J. Pathol. 185, 352–359.PubMedCrossRefGoogle Scholar
  101. 101.
    Felgner, J., Kreipe, H., Heidorn, K., Jaquet, K., Heuss, R., Zschunke, F., Radzun, H. J., and Parwaresch, M. R. (1992) Lineage-specific methylation of the c-fms gene in blood cells and macrophages. Leukemia 6, 420–425.PubMedGoogle Scholar
  102. 102.
    Bird, A. P. and Southern, E. M. (1978) Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J. Mol. Biol. 118, 27–47.PubMedCrossRefGoogle Scholar
  103. 103.
    Lubbert, M., Henschler, R., Kreutz, M., Andreesen, R., Mertelsmann, R., and Herrmann, F. (1997) The human lysozyme gene undergoes stepwise demethylation during phagocyte maturation. Leukemia 11, 990–997.PubMedCrossRefGoogle Scholar
  104. 104.
    Felgner, J., Heidorn, K., Korbacher, D., Frahm, S. O., and Parwaresch, R. (1999) Cell lineage specificity in G-CSF receptor gene methylation. Leukemia 13, 530–534.PubMedCrossRefGoogle Scholar
  105. 105.
    Jin, D. I., Jameson, S. B., Reddy, M. A., Schenkman, D., and Ostrowski, M. C. (1995) Alterations in differentiation and behavior of monocytic phagocytes in transgenic mice that express dominant suppressors of ras signaling. Mol. Cell. Biol. 15, 693–703.PubMedGoogle Scholar
  106. 106.
    Pahl, H. L., Scheibe, R. J., Zhang, D. E., Chen, H. M., Galson, D. L., Maki, R. A., and Tenen, D. G. (1993) The proto-oncogene PU.1 regulates expression of the myeloid-specific CD11b promoter. J. Biol. Chem. 268, 5014–5020.PubMedGoogle Scholar
  107. 107.
    Rosmarin, A. G., Caprio, D. G., Kirsch, D. G., Handa, H., and Simkevich, C. P. (1995a) GABP and PU.1 compete for binding, yet cooperate to increase CD18 (beta 2 leukocyte integrin) transcription. J. Biol. Chem. 270, 23,627–23,633.Google Scholar
  108. 108.
    Rosmarin, A. G., Caprio, D., Levy, R., and Simkevich, C. (1995b) CD18 (beta 2 leukocyte integrin) promoter requires PU.1 transcription factor for myeloid activity. Proc. Natl. Acad. Sci. USA 92, 801–805.PubMedCrossRefGoogle Scholar
  109. 109.
    Bottinger, E. P., Shelley, C. S., Farokhzad, O. C., and Arnaout, M. A. (1994) The human beta 2 integrin CD18 promoter consists of two inverted Ets cis elements. Mol. Cell. Biol. 14, 2604–2615.PubMedGoogle Scholar
  110. 110.
    Perez, C., Coeffier, E., Moreau-Gachelin, F., Wietzerbin, J., and Benech, P. D. (1994) Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fc gamma receptor. Mol. Cell. Biol. 14, 5023–5031.PubMedGoogle Scholar
  111. 111.
    Eichbaum, Q. G., Iyer, R., Raveh, D. P., Mathieu, C., and Ezekowitz, R. A. (1994) Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. J. Exp. Med. 179, 1985–1996.PubMedCrossRefGoogle Scholar
  112. 112.
    Feinman, R., Qiu, W. Q., Pearse, R. N., Nikolajczyk, B. S., Sen, R., Sheffery, M., and Ravetch, J. V. (1994) PU.1 and an HLH family member contribute to the myeloid-specific transcription of the Fc gamma RIIIA promoter. EMBO J. 13, 3852–3860.PubMedGoogle Scholar
  113. 113.
    Hohaus, S., Petrovick, M. S., Voso, M. T., Sun, Z., Zhang, D. E., and Tenen, D. G. (1995) PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol. Cell. Biol. 15, 5830–5845.PubMedGoogle Scholar
  114. 114.
    Heydemann, A., Juang, G., Hennessy, K., Parmacek, M. S., and Simon, M. C. (1996) The myeloid-cell-specific c-fes promoter is regulated by Sp1, PU.1, and a novel transcription factor. Mol. Cell. Biol. 16, 1676–1686.PubMedGoogle Scholar
  115. 115.
    Moulton, K. S., Semple, K., Wu, H., and Glass, C. K. (1994) Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif. Mol. Cell. Biol. 14, 4408–4418.PubMedGoogle Scholar
  116. 116.
    Kistler, B., Pfisterer, P., and Wirth, T. (1995) Lymphoid-and myeloid-specific activity of the PU.1 promoter is determined by the combinatorial action of octamer ets transcription factors. Oncogene 11, 1095–1106.PubMedGoogle Scholar
  117. 117.
    Chen, H., Ray-Gallet, D., Zhang, P., Hetherington, C. J., Gonzalez, D. A., Zhang, D. E., Moreau-Gachelin, F., and Tenen, D. G. (1995) PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11, 1549–1560.PubMedGoogle Scholar
  118. 118.
    Rehli, M., den Elzen, N., Cassady, A. I., Ostrowski, M. C., and Hume, D. A. (1999) Cloning and characterisation of the murine genes for bHLH-ZIP factors TFEC and TFEB reveals a common gene organisation for all MiT-subfamily members. Genomics 56, 111–120.PubMedCrossRefGoogle Scholar
  119. 119.
    Moreau-Gachelin, F. (1994) Spi-1/PU.1: an oncogene of the Ets family. Biochim. Biophys. Acta 1198, 149–163.PubMedGoogle Scholar
  120. 120.
    Klemsz, M. J., McKercher, S. R., Celada, A., van Beveren, C., and Maki, R. A. (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61, 113–124.PubMedCrossRefGoogle Scholar
  121. 121.
    Hromas, R., Orazi, A., Neiman, R. S., Maki, R., van Beveran, C., Moore, J., and Klemsz, M. (1993) Hematopoietic lineage-and stage-restricted expression of the ETS oncogene family member PU.1. Blood 82, 2998–3004.PubMedGoogle Scholar
  122. 122.
    Scott, E. W., Simon, M. C., Anastasi, J., and Singh, H. (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577.PubMedCrossRefGoogle Scholar
  123. 123.
    McKercher, S. R., Torbett, B. E., Anderson, K. L., Henkel, G. W., Vestal, D. J., Baribault, H., Klemsz, M., Feeney, A. J., Wu, G. E., Paige, C. J., and Maki, R. A. (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658.PubMedGoogle Scholar
  124. 124.
    Anderson, K. L., Smith, K. A., Conners, K., McKercher, S. R., Maki, R. A., and Torbett, B. E., (1998) Myeloid development is selectively disrupted in PU.1 null mice. Blood 91, 3702–3710.PubMedGoogle Scholar
  125. 125.
    DeKoter, R. P., Walsh, J. C., and Singh H. (1998) PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 17, 4456–4468.PubMedCrossRefGoogle Scholar
  126. 126.
    Olson, M. C., Scott, E. W., Hack, A. A., Su, G. H., Tenen, D. G., Singh, H., and Simon, M. C. (1995) PU.1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 3, 703–714.PubMedCrossRefGoogle Scholar
  127. 127.
    Fowles, L. F., Martin, M. L., Nelsen, L., Stacey, K. J., Redd, D., Clark, Y. M., Nagamine, Y., McMahon, M., Hume, D. A., and Ostrowski, M. C. (1998) Persistent activation of mitogen-activated protein kinases p42 and p44 and ets-2 phosphorylation in response to colony-stimulating factor 1/c-fms signaling. Mol. Cell. Biol. 18, 5148–5156.PubMedGoogle Scholar
  128. 128.
    Yang, B. S., Hauser, C. A., Henkel, G., Colman, M. S., van Beveren, C., Stacey, K. J., Hume, D. A., Maki, R. A., and Ostrowski, M. C. (1996) Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol. Cell. Biol. 16, 538–547.PubMedGoogle Scholar
  129. 129.
    Stacey, K. J., Fowles, L. F., Colman, M. S., Ostrowski, M. C., and Hume, D. A. (1995) Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol. Cell. Biol. 15, 3430–3441.PubMedGoogle Scholar
  130. 130.
    Hagemeier, C., Bannister, A. J., Cook, A., and Kouzarides, T. (1993) The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci USA 90, 1580–1584.PubMedCrossRefGoogle Scholar
  131. 131.
    Nuchprayoon, I., Meyers, S., Scott, L. M., Suzow, J., Hiebert, S., and Friedman, A. D. (1994) PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell. Biol. 14, 5558–5568.PubMedGoogle Scholar
  132. 132.
    Zhang, D. E., Hetherington, C. J., Meyers, S., Rhoades, K. L., Larson, C. J., Chen, H. M., Hiebert, S. W., and Tenen, D. G. (1996) CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol. Cell. Biol. 16, 1231–1240.PubMedGoogle Scholar
  133. 133.
    Petrovick, M. S., Hiebert, S. W., Friedman, A. D., Hetherington, C. J., Tenen, D. G., and Zhang, D. E. (1998) Multiple functional domains of AML1: PU.1 and C/EBP alpha synergize with different regions of AML1. Mol. Cell. Biol. 18, 3915–3925.PubMedGoogle Scholar
  134. 134.
    Xie, Y., Ross, I. L., Browne, C. M., Lichanska, A., Favot, P., Ostrowski, M. C., and Hume, D. A. (1996) Transcriptional control of the expression of the c-fms gene encoding the receptor for macrophage colony-stimulating (CSF-1). Immunobiology 195, 461–476.Google Scholar
  135. 135.
    Natsuka, S., Akira, S., Nishio, Y., Hashimoto, S., Sugita, T., Isshiki, H., and Kishimoto, T. (1992) Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood 79, 460–466.PubMedGoogle Scholar
  136. 136.
    Lowenstein, C. J., Alley, E. W., Raval, P., Snowman, A. M., Snyder, S. H., Russell, S. W., and Murphy, W. J. (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc. Natl. Acad. Sci. USA 90, 9730–9734.PubMedCrossRefGoogle Scholar
  137. 137.
    Bretz, J. D., Williams, S. C., Baer, M., Johnson, P. F., and Schwartz, R. C., (1994) C/EBP-related protein 2 confers lipopolysaccharide-inducible expression of interleukin 6 and monocyte chemoattractant protein 1 to a lymphoblastic cell line. Proc. Natl. Acad. Sci. USA 91, 7306–7310.PubMedCrossRefGoogle Scholar
  138. 138.
    Tanaka, T., Akira, S., Yoshida, K., Umemoto, M., Yoneda, Y., Shirafuji, N., Fujiwara, H., Suematsu, S., Yoshida, N., and Kishimoto, T. (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361.PubMedCrossRefGoogle Scholar
  139. 139.
    Hsu, W., Kerppola, T. K., Chen, P. L., Curran, T., and Chen-Kiang, S. (1994) Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region. Mol. Cell. Biol. 14, 268–276.PubMedGoogle Scholar
  140. 140.
    Landschulz, W. H., Johnson, P. F., and McKnight, S. L. (1989) The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243, 1681–1688.PubMedCrossRefGoogle Scholar
  141. 141.
    Vinson, C. R., Sigler, P. B., and McKnight, S. L. (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911–916.PubMedCrossRefGoogle Scholar
  142. 142.
    Chen, P. L., Riley, D. J., Chen-Kiang, S., and Lee, W. H. (1996) Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6. Proc. Natl. Acad. Sci. USA 93, 465–469.PubMedCrossRefGoogle Scholar
  143. 143.
    LeClair, K. P., Blanar, M. A., and Sharp, P. A. (1992) The p50 subunit of NF-kappa B associates with the NF-IL6 transcription factor. Proc. Natl. Acad. Sci. USA 89, 8145–8149.PubMedCrossRefGoogle Scholar
  144. 144.
    Mink, S., Kerber, U., and Klempnauer, K. H. (1996) Interaction of C/EBPbeta and v-Myb is required for synergistic activation of the mim-1 gene. Mol. Cell. Biol. 16, 1316–1325.PubMedGoogle Scholar
  145. 145.
    Stein, B., Cogswell, P. C., and Baldwin, A. S. Jr. (1993) Functional and physical associations between NF-kappa B and C/EBP family members: a Rel domain-bZIP interaction. Mol. Cell. Biol. 13, 3964–3974.PubMedGoogle Scholar
  146. 146.
    Nagulapalli, S., Pongubala, J. M., and Atchison, M. L. (1995) Multiple proteins physically interact with PU.1. Transcriptional synergy with NF-IL6 beta (C/EBP delta, CRP3). J. Immunol. 155, 4330–4338.PubMedGoogle Scholar
  147. 147.
    Voellmy, R. (1994) Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit. Rev. Eukaryot. Gene. Expr. 4, 357–401.PubMedGoogle Scholar
  148. 148.
    Wu, C. (1995) Heat shock transcription factors: structure and regulation. Annu. Rev. Cell. Dev. Biol. 11, 441–469.PubMedCrossRefGoogle Scholar
  149. 149.
    Sato, M., Morii, E., Takebayashi-Suzuki, K., Yasui, N., Ochi, T., Kitamura, Y., and Nomura, S. (1999) Microphthalmia-associated transcription factor interacts with PU.1 and c-Fos: determination of their subcellular localization. Biochem Biophys. Res. Commun. 254, 384–387.PubMedCrossRefGoogle Scholar
  150. 150.
    Behre, G., Whitmarsh, A. J., Coghlan, M. P., Hoang, T., Carpenter, C. L., Zhang, D. E., Davis, R. J., and Tenen, D. G. (1999) c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J. Biol. Chem. 274, 4939–4346.PubMedCrossRefGoogle Scholar
  151. 151.
    Li, A. C., Guidez, F. R., Collier, J. G., and Glass, C. K. (1998) The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun. J. Biol. Chem. 273, 5389–5399.PubMedCrossRefGoogle Scholar
  152. 152.
    Rehli, M., Lichanska, A., den Elzen, N., Ostrowski, M. C., and Hume, D. A. (1999) TFEC is a macrophage-restricted member of the MiT-subfamily of bHLH-ZIP transcription factors. J. Immunol. 162, 1559–1565.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Yue Xie
    • 1
  • Changmin Chen
    • 2
  • David A. Hume
    • 3
  1. 1.Department of Adult OncologyDana Farber Cancer InstituteUSA
  2. 2.Laboratory of Molecular and Cellular Biology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBoston
  3. 3.Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular BiologyUniversity of QueenslandBrisbaneAustralia

Personalised recommendations