Cell Biochemistry and Biophysics

, Volume 32, Issue 1–3, pp 21–26 | Cite as

Peroxisome biogenesis in the yeast Yarrowia lipolytica

  • Vladimir I. Titorenko
  • Jennifer J. Smith
  • Rachel K. Szilard
  • Richard A. Rachubinski
Part I Peroxisome Biogenesis

Abstract

Extensive perexisome proliferation during growth on oleic acid, combined with the availability of excellent genetic tools, makes the dimorphic yeast, Yarrowia lipolytica, a powerful model system to study the molecular mechanisms involved in peroxisome biogenesis. A combined genetic, biochemical, and morphological approach has revealed that the endoplasmic reticulum (ER) plays an essential role in the assembly of functional peroxisomes in this yeast. The trafficking of some membrane proteins to the peroxisomes occurs via the ER, results in their glyco-sylation in the ER lumen, does not involve transit through the Golgi, and requires the products of the SEC238, SRP54, PEX1, and PEX6 genes. The authors' data suggest a model for protein import into peroxisomes via two subpopulations of ER-derived vesicles that are distinct from secretory vesicles. A kinetic analysis of the trafficking of peroxisomal proteins in vivo has demonstrated that membrane and matrix proteins are initially targeted to multiple vesicular precursors that represent intermediates in the assembly pathway of peroxisomes. The authors have also recently identified a novel cytosolic chaperone, Pex20p, that assists in the oligomerization of thiolase in the cytosol and promotes its targeting to the peroxisome. These data provide the first evidence that a chaperone-assisted folding and oligomerization of thiolase in the cytosol is required for the import of this protein into the peroxisomal matrix.

Index Entries

Biogenesis endoplasmic reticulum vesicle fusion protein trafficking oligomerization chaperone pex mutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lazarow, P. B. and Fujiki, Y. (1985) Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489–530.PubMedCrossRefGoogle Scholar
  2. 2.
    Subramani, S. (1993) Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell Biol. 9, 445–478.PubMedCrossRefGoogle Scholar
  3. 3.
    Van den Bosch, H., Schutgens, R. B. H., Wanders, R. J. A., and Tager, J. M. (1992) Biochemistry of peroxisomes. Annu. Rev. Biochem. 61, 157–197.PubMedCrossRefGoogle Scholar
  4. 4.
    Subramani, S. 1998. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Pharmacol. Rev. 78, 171–188.Google Scholar
  5. 5.
    Novikoff, A. B. and Shin, W.-Y. (1964) The endoplasmic reticulum in the Golgi zone and its relations to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J. Microsc. 3, 187–206.Google Scholar
  6. 6.
    Higashi, T. and Peters, T., Jr. (1963) Studies on rat liver catalase. II. Incorporation of C14-leucine into catalase of liver cell fractions in vivo. J. Biol. Chem. 238, 3952–3954.PubMedGoogle Scholar
  7. 7.
    Titorenko, V. I., Ogrydziak, D. M., and Rachubinski, R. A. (1997) Four distinct secretory pathways serve protein secretion, ceil surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol. Cell. Biol. 17, 5210–5226.PubMedGoogle Scholar
  8. 8.
    Titorenko, V. I. and Rachubinski, R. A. (1998a) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. 18, 2789–2803.PubMedGoogle Scholar
  9. 9.
    Titorenko, V. I. and Rachubinski, R. A. (1998b) The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem. Sci. 23, 231–233.PubMedCrossRefGoogle Scholar
  10. 10.
    Fahimi, H. D., Baumgart, E., and Völkl, A. (1993) Ultrastructural aspects of biogenesis of peroxisomes in rat liver. Biochimie 75, 201–208.PubMedCrossRefGoogle Scholar
  11. 11.
    Titorenko, V. I., Eitzen, G. A., and Rachubinski, R. A. (1996) Mutations in the PAY5 gene of the yeast Yarrowia lipolytica cause accumulation of multiple subpopulations of peroxisomes. J. Biol. Chem. 271, 20,307–20,314.CrossRefGoogle Scholar
  12. 12.
    Passreiter, M., Anton, M., Lay, D., Frank, R., Harter, C., Wieland, F. T., Gorgas, K., and Just, W. W. (1998) Peroxisome biogenesis: involvement of ARF and coatomer. J. Cell Biol. 141, 373–383.PubMedCrossRefGoogle Scholar
  13. 13.
    Titorenko, V. I., Smith, J. J., Szilard, R. K., and Rachubinski, R. A. (1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. 142, 403–420.PubMedCrossRefGoogle Scholar
  14. 14.
    McNew, J. A. and Goodman, J. M. (1996) The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem. Sci. 21, 54–58.PubMedCrossRefGoogle Scholar
  15. 15.
    Schatz, G. and Dobberstein, B. (1996) Common principles of protein translocation across membranes. Science 271, 1519–1526.PubMedCrossRefGoogle Scholar
  16. 16.
    Glover, J. R., Andrews, D. W., and Rachubinski, R. A. (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl. Acad. Sci. USA 91, 10,541–10,545.CrossRefGoogle Scholar
  17. 17.
    McNew, J. A. and Goodman, J. M. (1994) An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127, 1245–1257.PubMedCrossRefGoogle Scholar
  18. 18.
    Walton, P. A., Hill, P. E., and Subramani, S. (1995) Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6, 675–683.PubMedGoogle Scholar
  19. 19.
    Elgersma, Y., Vos, A., van den Berg, M., van Roermund, C. W., van der Sluijs, P., Distel, B., and Tabak, H. F. (1996) Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J. Biol. Chem. 271, 26,375–26,382.Google Scholar
  20. 20.
    Häusler, T., Stierhof, Y., Wirtz, E., and Clayton, C. (1996) Import of DHFR hybrid protein into glycosomes in vivo is not inhibited by the folate-analogue aminopterin. J. Cell Biol. 132, 311–324.PubMedCrossRefGoogle Scholar
  21. 21.
    Leiper, J. M., Oatey, P. B., and Danpure, C. J. (1996) Inhibition of alanine: glyoxylate amino-transferase 1 dimerization is a prerequisite for its peroxisome-to-mitochondrion mistargeting in primary hyperoxaluria type 1. J. Cell Biol. 135, 939–951.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee, M. S., Mullen, R. T., and Trelease, R. N. (1997) Oilseed isocitrate lyases lacking their essential type I peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell 9, 185–197.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Inc. 2000

Authors and Affiliations

  • Vladimir I. Titorenko
    • 1
  • Jennifer J. Smith
    • 1
  • Rachel K. Szilard
    • 1
  • Richard A. Rachubinski
    • 1
  1. 1.Department of Cell BiologyUniversity of Alberta, EdmontonAlbertaCanada

Personalised recommendations