Skip to main content
Log in

CGI-55 interacts with nuclear proteins and co-localizes to p80-coilin positive-coiled bodies in the nucleus

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The human protein CGI-55 has been described as a chromo-helicase-DNA-binding domain protein (CHD)-3 interacting protein and was also found to interact with the 3′-region of the plasminogen activator inhibitor (PAI)-1 mRNA. Here, we used CGI-55 as a “bait” in a yeast two-hybrid screen and identified eight interacting proteins: Dax, Topoisomerase I binding RS (Topors), HPC2, UBA2, TDG, and protein inhibitor of activated STAT (signal transducer and activator of transcription) (PIAS)-1,-3, and-y. These proteins are either structurally or functionally associated with promyelocytic leukemia nuclear bodies (PML-NBs), protein sumoylation, or the regulation of transcription. The interactions of CGI-55 with Daxx, Topors, PIASy, and UBA2 were confirmed by in vivo colocalization experiments in HeLa cells, by using green (GFP) and red fluorescence fusion proteins. A mapping study of the CGI-55 binding site for these proteins revealed three distinct patterns of interaction. The fact that CGI-55-GFP has been localized in cytoplasm and nucleus in a dotted manner, and its interaction with proteins associated with PML-NBs, suggested that CGI-55 might be associated with nuclear bodies. Although Daxx and Topors co-localized with promyelocytic leukemia protein (PML), CGI-55 itself as well as PIASy and UBA2 showed only little co-localization with PML. However, we observed that CGI-55 localizes to the nucleolus and co-localizes with p80-coilin positive nuclear-coiled bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobarg, J., Schnittger, S., Fonatsch, C., et al. (1997) Characterization, mapping and partial cDNA sequence of the 57-kDa intracellular Ki-1 antigen. Exp. Clin. Immunogenet. 14, 273–280.

    PubMed  CAS  Google Scholar 

  2. Lemos, T. A., Passos, D. O., Nery, F. C., and Kobarg, J. (2003) Characterization of a new family of proteins that interact with the C-terminal region of the chromatin-remodeling factor CHD-3. FEBS Lett. 533, 14–20.

    Article  PubMed  CAS  Google Scholar 

  3. Heaton, J. H., Dlakic, W. M., Dlakic, M., and Gelehrter, T. D. (2001) Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the type-1 plasminogen activator inhibitor mRNA. J. Biol. Chem. 276, 3341–3347.

    Article  PubMed  CAS  Google Scholar 

  4. Huang, L., Grammatikakis, N., Yoneda, M., Banerjee, S. D., and Toole, B. P. (2000) Molecular characterization of a novel intracellular hyaluronan-binding protein. J. Biol. Chem. 275, 29,829–29,839.

    CAS  Google Scholar 

  5. Nery, F. C., Passos, D. O., Garcia, V. S., and Kobarg, J. (2004) Ki-1/57 interacts with RACK1 and is a substrate for PMA activated PKC. J. Biol. Chem. 279, 11,444–11,455.

    Article  CAS  Google Scholar 

  6. Ozaki, T., Watanabe, K.-I., Nakagawa, T., Miyazaki, K., Takahashi, M., and Nakagawara, A. (2003) Function of p73, not of p53, is inhibited by the physical interaction with RACK1 and its inhibitory effect is counteracted by pRB. Oncogene 22, 3231–3242.

    Article  PubMed  CAS  Google Scholar 

  7. Matera, A. G. (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309.

    Article  PubMed  CAS  Google Scholar 

  8. Andrade, L. E. C., Tan, E. M., and Chan, E. K. L. (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 99, 1947–1951.

    Article  Google Scholar 

  9. Ogg, S. C., and Lamond, A. I. (2002) Cajal bodies and coilin-moving towards function. J. Cell Biol. 14, 17–21.

    Article  CAS  Google Scholar 

  10. Zhong, S., Salomoni, P., and Pandolfi, P. (2000) The transcriptional role of PML and the nuclear body. Nat. Cell Biol. 2, E85-E90.

    Article  PubMed  CAS  Google Scholar 

  11. Rasheed, Z. A., Saleem, A., Ravee, Y., Pandolfi, P. P., and Rubin, E. H. (2002) The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. Exp. Cell. Res. 277, 152–160.

    Article  PubMed  CAS  Google Scholar 

  12. Salomoni, P. and Pandolfi, P. P. (2002) The role of PML in tumor suppression. Cell 108, 165–170.

    Article  PubMed  CAS  Google Scholar 

  13. Everett, R. D., Lomonte, P., Sternsdorf, T., van Driel, R., and Orr, A. (1999) Cell cycle regulation of PML modification and ND10 composition. J. Cell Sci. 112, 4581–4588.

    PubMed  CAS  Google Scholar 

  14. Zhong, S., Müller, S., Ronchetti, S., Freemont, P. S., Dejean, A., and Pandolfi, P. P. (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748–2752.

    PubMed  CAS  Google Scholar 

  15. Borden, K. L. (2002) Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions from PML nuclear bodies. Mol. Cell. Biol. 22, 5259–5269.

    Article  PubMed  CAS  Google Scholar 

  16. Sterndorf, T., Jensen, K., and Will, H. (1997) Evidence for covalent modification of the nuclear dot-associated proteins PML and SP100 by PIC1/SUMO1. J. Cell Biol. 139, 1621–1634.

    Article  Google Scholar 

  17. Ishov, A. M., Sotnikov, A. G., Negorev, D., et al. (1999) PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234.

    Article  PubMed  CAS  Google Scholar 

  18. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  19. Vojtek, A. B. and Hollenberg, S. M. (1995) Ras-Raf interaction: two-hybrid analysis. Methods Enzymol. 255, 331–342.

    Article  PubMed  CAS  Google Scholar 

  20. Moraes, K. C., Quaresma, A. J., Maehnss, K., and Kobarg, J. (2003) Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D). Biol. Chem. 384, 35–37.

    Article  Google Scholar 

  21. Schmidt, D. and Müller, S. (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. U.S.A. 99, 2872–2877.

    Article  PubMed  CAS  Google Scholar 

  22. Kotaja, N., Karvonen, U., Janne, O. A., and Palvimo, J. J. (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol. 22, 5222–5234.

    Article  PubMed  CAS  Google Scholar 

  23. Müller, S., Matunis, M. J., and Dejean, A. (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70.

    Article  PubMed  Google Scholar 

  24. Valdez, B. C., Henning, D., Perlaky, L., Busch, R. K., and Busch, H. (1997) Cloning and characterization of Gu/RH-II binding protein. Biochem. Biophys. Res. Commun. 234, 335–340.

    Article  PubMed  CAS  Google Scholar 

  25. Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T., and Yasuda, H. (2002) Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J. Biol. Chem. 277, 50,131–50,136.

    Article  CAS  Google Scholar 

  26. Haluska, P., Jr., Saleem, A., Rasheed, Z., et al. (1999) Interaction between human topoisomerase I and a novel RING-finger/arginine-serine protein. Nucleic Acids Res. 27, 2538–2544.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou, R., Wen, H., and Ao, S. Z. (1999) Identification of a novel gene encoding a p53-associated protein. Gene 235, 93–101.

    Article  PubMed  CAS  Google Scholar 

  28. Rechsteiner, M., Rogers, S. W. (1996) PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271.

    Article  PubMed  CAS  Google Scholar 

  29. Torii, S., Egan, D. A., Evans, R. A., and Reed, J. C. (1999) Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J. 18, 6037–6049.

    Article  PubMed  CAS  Google Scholar 

  30. Li, R., Pei, H., Watson, D. K., and Papas, T. S. (2000) EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 19, 745–753.

    Article  PubMed  CAS  Google Scholar 

  31. Ko, Y. G., Kang, Y. S., Park, H., et al. (2001) Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J. Biol. Chem. 276, 39,103–39,106.

    CAS  Google Scholar 

  32. Lin, D. Y., Lai, M. Z., Ann, D. K., and Shih, H. M. (2003) Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by Sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J. Biol. Chem. 278, 15,958–15,965.

    CAS  Google Scholar 

  33. Shih, H. P., Hales, K. G., Pringle, J. R., and Peifer, M. (2002) Identification of septin-interacting proteins and characterization of the Smt3/SUMO-conjugation system in Drosophila. J. Cell Sci. 115, 1259–1271.

    PubMed  CAS  Google Scholar 

  34. Chu, D., Kakazu, N., Gorrin-Rivas, M. J., et al. (2001) Cloning and characterization of LUN, a novel ring finger protein that is highly expressed in lung and specifically binds to a palindromic sequence. J. Biol. Chem. 276, 14,004–14,013.

    CAS  Google Scholar 

  35. Yang, X., Khosravi-Far, R., Chang, H. Y., and Baltimore, D. (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  36. Emelyanov, A. V., Kovac, C. R., Sepulveda, M. A., and Birshtein, B. K. (2002) The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J. Biol. Chem. 277, 11,156–11,164.

    Article  CAS  Google Scholar 

  37. Pluta, A. F., Earnshaw, W. C., and Goldberg, I. G. (1998) Interphase-specific association of intrinsic centromer protein CENP-C with Daxx, a death domain-binding protein implicated in Fas-mediated cell death. J. Cell. Sci. 111, 2029–2041.

    PubMed  CAS  Google Scholar 

  38. Satijn, D. P., Olson, D. J., van der Vlag, J., et al. (1997) Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis. Mol. Cell. Biol. 17, 6076–6086.

    PubMed  CAS  Google Scholar 

  39. Liu, B., Liao, J., Rao, X., et al. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. U.S.A. 95, 10,626–10,631.

    CAS  Google Scholar 

  40. Kahyo, T., Nishida, T., and Yasuda, H. (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell. 8, 713–718.

    Article  PubMed  CAS  Google Scholar 

  41. Jackson, P. K. (2001) A new RING for SUMO: wrestling transcriptional responses into nuclear bodieswith PIAS family E3 SUMO ligases. Genes Dev. 15, 3053–3058.

    Article  PubMed  CAS  Google Scholar 

  42. Desterro, J. M., Rodríguez, M. S., Kemp, G. D., and Hay, R. T. (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10,618–10,624.

    Article  CAS  Google Scholar 

  43. Gong, L., Li, B., Millas, S., and Yeh, E. T. (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448, 185–189.

    Article  PubMed  CAS  Google Scholar 

  44. Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N., and Yasuda, H. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun. 254, 693–698.

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez, M. S., Desterro, J. M., Lían, S., Midgley, C. A., Lane, D. P., and Hay, R. T. (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461.

    Article  PubMed  CAS  Google Scholar 

  46. Neddermann, P., Gallinari, P., Lettieri, T., et al. (1996) Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 271, 12,767–12,774.

    CAS  Google Scholar 

  47. Lindahl, T. (1982) DNA repair enzymes. Annu. Rev. Biochem. 51, 61–87.

    Article  PubMed  CAS  Google Scholar 

  48. Hardeland, U., Steinacher, R., Jiricny, J., and Schär, P. (2002) Modification of the human tymine-DNA-glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456–1464.

    Article  PubMed  CAS  Google Scholar 

  49. Takahashi, H., Hatakeyama, S., Saitoh, H., and Nakayama, K. I. (2005) Noncovalent SUMO-1 binding of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein (PML). J. Biol. Chem. 280, 5611–5621.

    Article  PubMed  CAS  Google Scholar 

  50. Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971–982.

    PubMed  CAS  Google Scholar 

  51. Long, J., Matsura, I., He, D., Wang, G., Shuai, K., and Liu, F. (2003) Repression of SMAD transcriptional activity by PIASy, an inhibitor of activated STAT. Proc. Natl. Acad. Sci. U.S.A. 100, 9791–9796.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kobarg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemos, T.A., Kobarg, J. CGI-55 interacts with nuclear proteins and co-localizes to p80-coilin positive-coiled bodies in the nucleus. Cell Biochem Biophys 44, 463–474 (2006). https://doi.org/10.1385/CBB:44:3:463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:3:463

Index Entries

Navigation