Skip to main content
Log in

Molecular models of tryptophan synthase from Mycobacterium tuberculosis complexed with inhibitors

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The development of new therapies against infectious diseases is vital in developing countries. Among infectious diseases, tuberculosis is considered the leading cause of death. A target for development of new drugs is the tryptophan pathway. The last enzyme of this pathway, tryptophan synthase (TRPS), is responsible for conversion of the indole 3-glycerol phosphate into indol and the condensation of this molecule with serine-producting tryptophan. The present work describes the molecular models of TRPS from Mycobacterium tuberculosis (MtTRPS) complexed with six inhibitors, the indole 3-propanol phosphate and five arylthioalkyl-phosphonated analogs of substrate of the α-subunit. The molecular models of MtTRPS present good stereochemistry, and the binding of the inhibitors is favorable. Thus, the generated models can be used in the design of more specific drugs against tuberculosis and other infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trouiller, P., Torreele, E., Olliaro, P., et al. (2001) Drugs for neglected diseases: a failure of the market and a public health failure? Trop. Med. Int. Health 6, 945–951.

    Article  PubMed  CAS  Google Scholar 

  2. World Health Organization. Global Tuberculosis Control. WHO Report 2001. Geneva, Switzerland, WHO/CDS/TB/2001.287

  3. Dosselaere, F. and Vanderleyden, J. (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit. Rev. Microbiol. 27, 75–131.

    Article  PubMed  CAS  Google Scholar 

  4. Roberts, F., Roberts, C. W., Johnson, J. J., et al. (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature 393, 801–805.

    Article  PubMed  CAS  Google Scholar 

  5. Schonbrunn, E., Eschenburg, S., Shuttleworth, W. A., et al., (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. U.S.A. 98, 1376–1380.

    Article  PubMed  CAS  Google Scholar 

  6. Daves, G. M., Barrett-Bee, K. J. Jude, D. A., et al. (1994) (6S)-6-Fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob. Agents Chemother. 38, 403–406.

    Google Scholar 

  7. Finn, J., Langevine, C., Birk, I., Nicherson, K., and Rodaway, S. (1999) Rational herbicide design by inhibition of tryptophan biosynthesis. Bioorg. Med. Chem. Lett. 9, 2297–2302.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, D. A., Parish, T., Stoker, N. G., and Bancroft, G. J. (2001) Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 69, 1142–1150.

    Article  PubMed  CAS  Google Scholar 

  9. Hyde, C. C. and Miles, E. W. (1990) The tryptophan synthase multienzyme complex: exploring structure-function relationships with X-ray crystallography and mutagenesis. Biotechnology 8, 27–32.

    Article  PubMed  CAS  Google Scholar 

  10. Pan, P., Woehl, E., and Dunn, M. F. (1997) Protein architecture, dynamics and allostery in trytophan synthase channeling. Trends Biochem. Sci. 22, 22–27.

    Article  PubMed  CAS  Google Scholar 

  11. Weyand, M. and Schlichting, I. (1999) Crystal structure of wild-type tryptophan synthase complexed with the natural substrate indole-3-glycerol phosphate. Biochemistry 38, 16,469–16,480.

    Article  CAS  Google Scholar 

  12. Sachpatzidis, A., Dealwis, C., Lubetsky, J. B., Liang, P. H., Anderson, K. S., and Lolis, E. (1999) Crystallographic studies of phosphonate-based alpha-reaction transition-state analogues complexed to tryptophan synthase. Biochemistry 38, 12,665–12,674.

    Article  CAS  Google Scholar 

  13. Uchoa, H. B., Jorge, G. E., da Silveira, N. J. F., Camera, J. C., Jr., Canduri, F., and de Azevedo, W. F., Jr. (2004) Parmodel: a web server for automated comparative modeling of proteins. Biochem. Biophys. Res. Commun. 325, 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  14. Sali, A. and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  15. Collaborative Computational Project No. 4 (1994) The CCP4 suite: program for protein crystallography. Acta Crystallogr. D 50, 760–763.

    Article  Google Scholar 

  16. Brünger, A. T. (1992) X-PLOR version 3.1: a system for crystallography and NMR. Yale University Press, New Haven, CT.

    Google Scholar 

  17. Bowie, J. U., Luthy, R., and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170.

    Article  PubMed  CAS  Google Scholar 

  18. Luthy, R., Bowie, J., and Eisenberg D. (1992) Assessment of protein models with three-dimensional profiles. Nature 356, 83–85.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, R., Liu, L., Lai, L., and Tang, Y. (1998) SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J. Mol. Model. 4, 379–394.

    Article  CAS  Google Scholar 

  20. Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988) Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263, 17,857–17,871.

    CAS  Google Scholar 

  21. Banner, D. W., Bloomer, A. C., Petsko, G. A., et al. (1975) Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data. Nature 255, 609–614.

    Article  PubMed  CAS  Google Scholar 

  22. Rhee, S., Miles, E. W., Mozzarelli, A., and Davies, D. R. (1998) Cryocrystallography and microspectrophotometry of a mutant (alpha D60N) tryptophan synthase alpha 2 beta 2 complex reveals allosteric roles of alpha Asp60. Biochemistry 37, 10,653–10,659.

    Article  CAS  Google Scholar 

  23. De Azevedo, W. F., Jr., Mueller-Dieckmann, H. J., Schulze-Gahmen, U., Worland, P. J., Sausville, E., and Kim, S. H. (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. U.S.A. 93, 2735–2740.

    Article  PubMed  Google Scholar 

  24. De Azevedo, W. F., Jr., Canduri, F., Dos Santos, D. M., et al. (2003) Structural basis for inhibition of human PNP by immucillin-H. Biochem. Biophys. Res. Commun. 309, 922–927.

    Article  Google Scholar 

  25. Pereira, J. H., Canduri, F., de Oliveira, J. S., et al. (2003) Structural bioinformatics study of EPSP synthase from Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 312, 608–614.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  27. Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diógenes Santiago Santos or Walter Filgueira de Azevedo Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, M.V.B., Canduri, F., da Silveira, N.J.F. et al. Molecular models of tryptophan synthase from Mycobacterium tuberculosis complexed with inhibitors. Cell Biochem Biophys 44, 375–384 (2006). https://doi.org/10.1385/CBB:44:3:375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:3:375

Index Entries

Navigation