Skip to main content
Log in

Peroxisome proliferator-activated receptor-γ ligands attenuate brain natriuretic peptide production and affect remodeling in cardiac fibroblasts in reoxygenation after hypoxia

  • Original article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts (CFs) participate in cardiac remodeling after hypoxic cardiac damage, and remodeling is thought to be mediated by CF synthesis of brain natriuretic peptide (BNP). It is unknown whether the peroxisome proliferator-activated receptors (PPARs), which mediate cellular signaling for growth and migration, affect BNP synthesis and whether PPARs participate in regulation of extracellular matrix protein (ECM) expression for remodeling. We examined the production of BNP in cultured neonatal ventricular CFs and its signaling system on collagen synthesis and on activation of matrix metalloproteinases (MMPs) in reoxygenation after hypoxia. BNP mRNA was detected in CFs, and a specific BNP protein, BNP1-32, was secreted into the media. Abundance of collagen I and III was increased in the media at reoxygenation. mRNA and protein levels for MMP-2 and the tissue inhibitor of metalloproteinase (TIMP)-1 were enhanced in CFs at reoxygenation. These observations also were noted in CFs after incubation with angiotensin II (10 μM) for 24 h. Pretreatment with pioglitaozone (0.1–10 μM) attenuated BNP mRNA and protein abundance of collagen III, MMP-2, and TIMP-1 in CFs at reoxygenation. The secreted BNP was also decreased by pioglitaozone in the media. Furthermore, PPAR activators inhibited reoxygenation-induced activation of nuclear factor (NF)-kB. These results demonstrate that PPAR activators inhibit BNP synthesis in CFs and imply that PPAR activators may regulate ECM remodeling partially through the NF-kB-mediated pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Epiner, E. A. (1997) Physiology of natriuretic peptides: cardiovascular function in Natriuretic Peptides in Health and Disease (Samson, W. K. and Levin, E. R. eds.), Totowa, NJ: Humana Press, pp. 123–146.

    Google Scholar 

  2. Cao, L. and Gardner, D. G. (1995) Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25, 227–234.

    PubMed  CAS  Google Scholar 

  3. Tamura, N., Ogawa, Y., Chusho, H., et al. (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc. Natl. Acad. Sci. USA 97, 4239–4244.

    Article  PubMed  CAS  Google Scholar 

  4. Cameron, V. A., Rademaker, M. T., Ellmers, L. J., Espiner, E. A., Nicholls, M. G., and Richards, A. M. (2000) Atrial (ANP) and brain natriuretic peptide (BNP) expression after myocardial infarction in sheep: ANP is synthesized by fibroblasts infiltrating the infarct. Endocrinology 141, 4690–4697.

    Article  PubMed  CAS  Google Scholar 

  5. Marx, N., Schonbeck, U., Lazar, M. A., et al. (1998) Peroxisome proliferator-activated receptor γ activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ. Res. 83, 1097–1103.

    PubMed  CAS  Google Scholar 

  6. Law, R. E., Goetze, S., Xi, X.-P., et al. (2000) Expression and function of PPAR in rat and human vascular smooth muscle cells. Circulation 101, 1311–1318.

    PubMed  CAS  Google Scholar 

  7. Gralinski, M. R., Rowse, P. E., and Breider, M. A. (1998) Effects of troglitazone and pioglitazone on cytokine-mediated endothelial cell proliferation in vitro. J. Cardiovasc. Pharmacol. 31, 909–913.

    Article  PubMed  CAS  Google Scholar 

  8. Asakawa, M., Takano, H., Nagai, T., et al. (2002) Peroxisome proliferator-activated receptor γ plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 105, 1240–1246.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe, K., Sekiya, M., Tsuruoka, T., et al. (1999) Effect of insulin resistance on left ventricular hypertrophy and dysfunction in essential hypertension. J. Hypertens. 17, 1153–1160.

    Article  PubMed  CAS  Google Scholar 

  10. Paternostro, G., Pagano, D., Gnecchi-Ruscone, T., et al. (1999) Insulin resistance in patients with cardiac hypertrophy. Cardiovasc. Res. 42, 246–253.

    Article  PubMed  CAS  Google Scholar 

  11. Tsuruda, T., Jougasaki, M., Boerrigter, G., et al. (2002) Cardiotrophin-1 stimulation of cardiac fibroblast growth: roles for glycoprotein 130/leukemia inhibitory factor receptor and the endothelin type A receptor. Circ. Res. 90, 128–134.

    Article  PubMed  CAS  Google Scholar 

  12. Makino, N., Sugano, M., Masutomo, K., Hata, T., and Fushiki, S. (2003) Matrix degradation enzyme activities on cardiac remodeling in heart failure in Cardiac Remodeling and Failure (Singal, P.K., Dixon, I.M.C., Kirchenbaum, L.A., and Dhalla, N. eds.), Boston: Kluwer Academic Publishers, pp. 305–318.

    Google Scholar 

  13. Yamamoto, K., Ohki, R., Lee, R.T., Ikeda, U., and Shimada, K. (2001) Peroxisome proliferator-activated receptor γ activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 104, 1670–1675.

    PubMed  CAS  Google Scholar 

  14. Masutomo K., Makino N., Sugano M., Miyamoto S., Hata T., and Yanaga T. (1999) Extracellular matrix regulation in the development of Syrian cardiomyopathic Bio 14.6 and Bio 53.58 hamsters. J. Mol. Cell. Cardiol. 31, 1607–1615.

    Article  PubMed  CAS  Google Scholar 

  15. Sugano, M., Tsuchida, K., and Makino, N. (2004) Intramuscular gene transfer of soluble tumor necrosis factor-α receptor 1 activates vascular endothelial growth factor receptor and accelerates angiogenesis in a rat model of hindlimb ischemia. Circulation 109, 797–802.

    Article  PubMed  CAS  Google Scholar 

  16. Sugano, M., Tsuchida, K., and Makino, N. (2000) High-density lipoproteins protect endothelial cells from tumor necrosis factor-α-induced apoptosis. Biochem. Biophys. Res. Commun. 272, 872–876.

    Article  PubMed  CAS  Google Scholar 

  17. Powell, D. W., Mifflin, R. C., Valentich, J. D., Crowe, S. E., Saada, J. I., and West, A. B. (1999) Myofibroblasts, I: paracrine cells important in health and disease. Am. J. Physiol. 277, C183-C201.

    PubMed  CAS  Google Scholar 

  18. Weber, K. T., Sun, Y., and Katwa, L. C. (1997) Myofibroblasts and local angiotensin II in rat cardiac tissue repair. Int. J. Biochem. Cell Biol. 29, 31–42.

    Article  PubMed  CAS  Google Scholar 

  19. Spinale, F. G. (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ. Res. 90, 520–530.

    Article  PubMed  CAS  Google Scholar 

  20. Brew, K., Dinakarpandian, D., and Nagase, H. (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta 1477, 267–283.

    PubMed  CAS  Google Scholar 

  21. Tamamori, M., Ito, H., Hiroe, M., Marumo, F., and Hata, R. (1997) Stimulation of collagen synthesis in rat cardiac fibroblasts by exposure to hypoxic culture conditions and suppression of the effect by natriuretic peptides. Cell Biol. Int. 21, 175–180

    Article  PubMed  CAS  Google Scholar 

  22. Schoonjans, K., Staels, B., and Auwerx, J. (1996) The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302, 93–109.

    PubMed  CAS  Google Scholar 

  23. Ricote, M., Li, A. C., Willson, T. M., et al. (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82.

    Article  PubMed  CAS  Google Scholar 

  24. Schoonjans, K., Martin, G., Staels, B., et al. (1997) Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr. Opin. Lipidol. 8, 159–166.

    Article  PubMed  CAS  Google Scholar 

  25. Jiang, C., Ting, A. T., and Seed, B. (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Makino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makino, N., Sugano, M., Satoh, S. et al. Peroxisome proliferator-activated receptor-γ ligands attenuate brain natriuretic peptide production and affect remodeling in cardiac fibroblasts in reoxygenation after hypoxia. Cell Biochem Biophys 44, 65–71 (2006). https://doi.org/10.1385/CBB:44:1:065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:1:065

Index Entries

Navigation