Advertisement

Biological Trace Element Research

, Volume 99, Issue 1–3, pp 49–69 | Cite as

Zinc deficiency and growth

Current concepts in relationship to two important points: Intellectual and sexual development
  • M. J. Salgueiro
  • R. Weill
  • M. Zubillaga
  • A. Lysionek
  • R. Caro
  • C. Goldman
  • D. Barrado
  • M. Martinez Sarrasague
  • J. Boccio
Article

Abstract

Zinc deficiency remains a serious health problem worldwide affecting developed as well as developing countries. Despite the evidence proving that zinc deprivation during the periods of rapid growth negatively affects the cognitive brain as well as sexual development, there are few complete studies carried out in children. The present article proposes a revision of the evidence gathered until now on the relationship existing between zinc deficiency and intellectual and sexual development during the stages of childhood, preadolescence, and adolescence.

Index Entries

Zinc growth intellectual development sexual development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Alnwick, Combating micronutrient deficiencies: problems and perspectives, Proc. Nutr. Soc. 57, 137–147 (1998).PubMedCrossRefGoogle Scholar
  2. 2.
    I. Darnton-Hill, J. O. Mora, H. Weinstein, et al., Iron and folate fortification in the Americas to prevent and control micronutrient malnutrition: an analysis, Nutr. Rev. 57, 25–31 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Brown and E. Pollit, Malnutrition, poverty and intellectual development, Sci. Am. 26–31 (1996).Google Scholar
  4. 4.
    E. Pollit, Developmental sequel from early nutritional deficiencies: conclusive and probability judgements, J. Nutr. 130, 350s-353s (2000).Google Scholar
  5. 5.
    M. M. Balck, Zinc deficiency and child development, Am. J. Clin. Nutr. 68(Suppl.), 464–469s (1998).Google Scholar
  6. 6.
    H. H. Sandstead, Nutrition and brain function: trace elements, Nutr. Rev. 37–41 (1986).Google Scholar
  7. 7.
    M. J. Salgueiro, M. Zubillaga, A. E. Lysionek, et al., Cinc: conceptos actuales sobre un micronutriente esencial, APPTLA 49, 1–12 (1999).PubMedGoogle Scholar
  8. 8.
    M. L. P. M. Portela, Vitaminas y Minerales en Nutrición, Libreros López. Buenos Aires, Argentina, pp. 96–97 (1993).Google Scholar
  9. 9.
    E. N. Whitney and S. R. Rolfes, Zinc, in Understanding Nutrition, 6th ed., West, St. Paul, MN, pp. 417–424 (1993).Google Scholar
  10. 10.
    H. H. Sandstead, Causes of iron and zinc deficiencies and their effect on brain, J. Nutr. 130, 347s-349s (2000).PubMedGoogle Scholar
  11. 11.
    R. J. Cousins and J. M. Hempe, Conocimientos Actuales Sobre Nutricion, 6th ed., ILSI, Washington DC, pp. 289–300 (1991).Google Scholar
  12. 12.
    M. J. Salgueiro, M. Zubillaga, A. E. Lysionek, et al., The role of zinc in the growth and development of children, Nutrition 18, 510–519 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    H. H. Sandstead and P. A. Lofgren, Dietary zinc and iron. Recent perspectives regarding growth and cognitive development. Introduction, J. Nutr. 130, 345s-346s (2002).Google Scholar
  14. 14.
    M. S. Golub, C. L. Keen, and M. E. Gershwin, Moderate zinc-iron deprivation influences behavior but not growth in adolescent rhesus monkeys, J. Nutr. 130, 354–357 (2000).Google Scholar
  15. 15.
    R. S. Mac Donald, The role of zinc in growth and cell proliferation, J. Nutr. 130, 1500s-1508s (2000).Google Scholar
  16. 16.
    C. J. Frederickson, S. W. Suh, D. Silva, et al., Importance of zinc in the central nervous system: the zinc containing neuron, J. Nutr. 130, 1471s-1483s (2000).PubMedGoogle Scholar
  17. 17.
    J. G. Penland, Behavioral data and methodology issues in studies of zinc nutrition in humans, J. Nutr. 130, 361–364 (2000).Google Scholar
  18. 18.
    M. J. Salgueiro, M. Zubillaga, A. E. Lysionek, et al., Zinc as an essential micronutrien: a review, Nutr. Res. 20, 737–755 (2000).CrossRefGoogle Scholar
  19. 19.
    S. Bhatnagar and S. Taneja, Zinc and cognitive development, Br. J. Nutr. 85, 139s-145s (2001).CrossRefGoogle Scholar
  20. 20.
    M. S. Golub, C. L. Keen, and M. E. Gershwin, Behavioral and hematologic consequences of marginal iron-zinc nutrition in adolescent-monkeys and the effect of a powdered beef supplement, Am. J. Clin. Nutr. 70, 1059–1068 (1999).PubMedGoogle Scholar
  21. 21.
    R. J. McMahon and R. J. Cousins, Mammalian zinc transporters, J. Nutr. 128, 667–670 (1998).PubMedGoogle Scholar
  22. 22.
    R. J. Cousins and R. J. Mc Mahon, Integrative aspects of zinc transporters, J. Nutr. 130, 1384s-1387s (2000).PubMedGoogle Scholar
  23. 23.
    A. Takeda, Zinc homeostasis and function of zinc in the brain, Biometals 14, 343–351 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    R. A. Colvin, N. Davis, R. W. Nipper, et al., Zinc transport in the brain: routes of zinc influx and efflux in neurons, J. Nutr. 130, 1484s-1487s (2000).PubMedGoogle Scholar
  25. 25.
    H. H. Sandstead, C. J. Frederickson, and J. G. Penland, History of zinc as related to brain function, J. Nutr. 130, 496s-502s (2000).PubMedGoogle Scholar
  26. 26.
    M. S. Golub, C. L. Keen, M. E. Gershwin, et al., Developmental zinc deficiency and behavior, J. Nutr. 125, 2263–2271 (1995).Google Scholar
  27. 27.
    M. S. Golub, P. T. Takeuchi, C. L. Keen, et al., Activity and attention in zinc-deprived adolescent monkeys, Am. J. Clin. Nutr. 64, 908–915 (1996).PubMedGoogle Scholar
  28. 28.
    M. S. Golub, M. E. Gershwin, L. S. Hurley, et al., Studies of marginal zinc deprivation in Rhesus monkeys. Infant behavior, Am. J. Clin. Nutr. 42, 1229–1239 (1985).PubMedGoogle Scholar
  29. 29.
    M. S. Golub, P. T. Takeuchi, C. L. Keen, et al., Modulation of behavioral performance of prepubertal monkeys by moderate dietary zinc deprivation, Am. J. Clin. Nutr. 60, 238–243 (1994).PubMedGoogle Scholar
  30. 30.
    J. C. King, Assessment of zinc status, J. Nutr. 120, 1474–1479 (1990).PubMedGoogle Scholar
  31. 31.
    R. S. Gibson, Principles of Nutritional Assessment, Oxford University Press. New York, pp. 547–553 (1990).Google Scholar
  32. 32.
    M. Ruz, C. Castillo-Duran, X. Lara, et al., A 14-mo zinc-supplementation trial in apparently healthy chilean preschool children, Am. J. Clin. Nutr. 66, 1406–1413 (1997).PubMedGoogle Scholar
  33. 33.
    K. R. Cavan, R. S. Gibson, C. F. Grazioso, et al., Growth and body composition of periurban guatemalan children in relation to zinc status: a longitudinal zinc intervention trial, Am. J. Clin. Nutr. 57, 344–352 (1993).PubMedGoogle Scholar
  34. 34.
    A. Ashworth, S. S. Morris, P. I. C. Lira, et al., Zinc supplementation, mental development and behaviour in low birth weight term infants in northeast Brazil, Eur. J. Clin. Nutr. 52, 223–227 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    M. E. Hamadami, G. J. Fuchs, S. J. M. Osendarp, et al., Randomized controlled trial of the effect of zinc supplementation on the mental development of Bangladeshi infants, Am. J. Clin. Nutr. 74, 381–386 (2001).Google Scholar
  36. 36.
    J. K. Friel, L. A. Wayne, J. D. Matthew, et al., Zinc supplementation in very-low-birth-weight infants, J. Pediatr. Gastroenterol. Nutr. 17, 97–104 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Sazawal, M. Bentley, R. E. Black, et al., Effect of zinc supplementation on observed activity in low socioeconomic Indian preschool children, Pediatrics 98, 1132–1137 (1996).PubMedGoogle Scholar
  38. 38.
    M. E. Bentley, L. E. Caulfield, M. Ram, et al., Zinc supplementation affects the activity patterns of rural Guatemalan infants, J. Nutr. 127, 1333–1338 (1997).PubMedGoogle Scholar
  39. 39.
    C. Castillo-Duran, C. G. Perales, E. D. Hertrampf, et al., Effect of zinc supplementation on development and growth of Chilean infants, J. Pediatr. 138, 229–235 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    L. E. Caulfield, N. Zavaleta, A. H. Shankar, et al., Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival, Am. J. Clin. Nutr. 68(Suppl.), 499s-508s (1998).PubMedGoogle Scholar
  41. 41.
    H. H. Sandstead, J. G. Penland, N. W. Alcock, et al., Effects of zinc repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children, Am. J. Clin. Nutr. 68(Suppl.), 470s-475s (1998).PubMedGoogle Scholar
  42. 42.
    N. F. Krebs, Dietary zinc and iron sources, physical growth and cognitive development of breastfed infants, J. Nutr. 130, 358s-360s (2000).PubMedGoogle Scholar
  43. 43.
    M. J. Salgueiro, M. Zubillaga, A. E. Lysionek, et al., Fortification strategies to combat zinc and iron deficiency, Nutr. Rev. 60, 52–58 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    R. S. Gibson, F. Yeudall, N. Drost, et al., Dietary interventions to prevent zinc deficiency, Am. J. Clin. Nutr. 68(Suppl.), 484s-487s (1998).PubMedGoogle Scholar
  45. 45.
    R. S. Gibson and E. L. Ferguson, Nutrition intervention strategies to combat zinc deficiency in developing countries, Nutr. Res. Rev. 11, 115–131 (1998).CrossRefPubMedGoogle Scholar
  46. 46.
    M. Hambidge, Human zinc deficiency, J. Nutr. 130, 1344s-1349s (2000).PubMedGoogle Scholar
  47. 47.
    L. H. Allen, Zinc and micronutrient supplements for children, Am. J. Clin. Nutr. 68(Suppl.), 495s-498s (1998).PubMedGoogle Scholar
  48. 48.
    M. Ruz, Trace element intake and nutriture in Latin America, Proceedings of the International Congress of Nutrition, pp. 296–300 (1994).Google Scholar
  49. 49.
    K. H. Brown, J. M. Peerson, J. Rivera, et al., Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials, Am. J. Clin. Nutr. 75, 1062–1071 (2002).PubMedGoogle Scholar
  50. 50.
    E. Udomkesmalee, S. Dhanamitta, S. Sirisinha, et al., Effect of vitamin A and zinc supplementation on the nutriture of children in northeast Thailand, Am. J. Clin. Nutr. 56, 50–57 (1992).PubMedGoogle Scholar
  51. 51.
    B. O’Dell, History and status of zinc in nutrition, Fed. Proc. 43, 2821–2822 (1984).PubMedGoogle Scholar
  52. 52.
    A. S. Prasad, Discovery and importance of zinc in human nutrition, Fed. Proc. 43, 2829–2834 (1984).PubMedGoogle Scholar
  53. 53.
    J. Brandão-Neto, V. Stefan, B. B. Mendoça, et al., The essential role of zinc in growth, Nutr. Res. 15, 335–358 (1995).CrossRefGoogle Scholar
  54. 54.
    A. E. Favier, Hormonal effects of zinc on growth in children, Biol. Trace Element Res. 32, 383–398 (1992).Google Scholar
  55. 55.
    A. E. Favier, The role of zinc in reproduction. Hormonal mechanisms, Biol. Trace Element Res. 32, 363–381 (1992).Google Scholar
  56. 56.
    C. Castillo-Duran and F. Cassorla, Trace minerals in human growth and development, J. Pediatr. Endocrinol. Metab. 12(5,Suppl. 2), 589–601 (1999).Google Scholar
  57. 57.
    K. R. Cavan, R. S. Gibson, C. F. Grazioso, et al., Growth and body composition of periurban Guatemalan children in relation to zinc status: a cross-sectional study, Am. J. Clin. Nutr. 57, 334–343 (1993).PubMedGoogle Scholar
  58. 58.
    R. G. Lee, T. M. Rains, C. Tovar Palacio, et al., Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induce feeding in rats, J. Nutr. 128, 1218–1223 (1998).PubMedGoogle Scholar
  59. 59.
    A. S. Om and K. W. Chung, Dietary zinc deficiency alters 5α-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver, J. Nutr. 126, 842–848 (1996).PubMedGoogle Scholar
  60. 60.
    M. S. Golub, C. L. Keen, M. E. Gershwin, et al., Adolescent growth and maturation in zinc-deprived rhesus monkeys, Am. J. Clin. Nutr. 64, 274–282 (1996).PubMedGoogle Scholar
  61. 61.
    R. Laitinen, Zinc, copper, and sexual maturation in 9–18-year-old girls and boys, Biol. Trace Element Res. 25, 71–78 (1990).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • M. J. Salgueiro
    • 1
    • 2
  • R. Weill
    • 3
  • M. Zubillaga
    • 1
    • 2
  • A. Lysionek
    • 1
    • 2
  • R. Caro
    • 1
    • 2
  • C. Goldman
    • 1
    • 2
  • D. Barrado
    • 2
  • M. Martinez Sarrasague
    • 2
  • J. Boccio
    • 1
    • 2
  1. 1.Radioisotope LaboratorySchool of Pharmacy and Biochemistry, University of Buenos AiresBuenos AiresArgentina
  2. 2.Stable Isotope Laboratory Applied to Biology and Medicine, Physics DepartmentSchool of Pharmacy and Biochemistry, University of Buenos AiresBuenos AiresArgentina
  3. 3.Department of Agrarian IndustryUniversity of MoronBuenos AiresArgentina

Personalised recommendations