Biological Trace Element Research

, Volume 98, Issue 2, pp 159–169 | Cite as

Absorption of the biomimetic chromium cation triaqua-μ3-oxo-μ-hexapropionatotrichromium(III) in rats

  • Buffie J. Clodfelder
  • Christine Chang
  • John B. Vincent


The cation [Cr3O(O2CCH2CH3)6(H2O)3]+ has been shown in vitro to mimic to the oligopeptide chromodulin’s ability to stimulate the tyrosine kinase activity of insulin receptor and shown in healthy and type 2 diabetic model rats to increase insulin sensitivity and decrease plasma total and low-density lipoprotein cholesterol and triglycerides concentrations. However, the degree to which the complex is absorbed after gavage administration to rats had not been previously determined. The biomimetic cation at nutritional supplement levels is absorbed with greater than 60% efficiency, and at pharmacological levels, it is absorbed with greater than 40% efficiency, an order of magnitude greater absorption than that of CrCl3, Cr nicotinate, or Cr picolinate, currently marketed nutritional supplements. The difference in degree of absorption is readily explained by the stability and solubility of the cation.

Index Entries

Absorption chromium propionate rats insulin resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Vincent, The bioinorganic chemistry of chromium(III). Polyhedron 20, 1–26 (2001).CrossRefGoogle Scholar
  2. 2.
    P. Trumbo, A. A. Yates, S. Schlicker, et al., Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 101, 294–301 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    M. H. Pittler, C. Stevinson, and E. Ernst, Chromium picolinate for reducing body weight: meta-analysis of randomized trials. Int. J. Obes. 27, 522–529 (2003).CrossRefGoogle Scholar
  4. 4.
    S. L. Nissen and R. L. Sharp, Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J. Appl. Physiol. 94, 651–659 (2003).PubMedGoogle Scholar
  5. 5.
    J. B. Vincent, The potential value and potential toxicity of chromium picolinate as a nutritional supplement, weight loss agent, and muscle development agent. Sports Med. 33, 213–230 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    M. D. Althuis, N. E. Jordan, E. A. Ludington, et al., Glucose and insulin responses to dietary chromium supplements: A meta-analysis. Am. J. Clin. Nutr. 76, 148–155 (2002).PubMedGoogle Scholar
  7. 7.
    R. A. Anderson, N. A. Bryden, and M. M. Polansky, Lack of toxicity of chromium chloride and chromium picolinate in rats. J. Am. Coll. Nutr. 16, 273–279 (1997).PubMedGoogle Scholar
  8. 8.
    Y. Sun, K. Mallya, J. Ramirez, et al., The biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ decreases cholesterol and triglycerides in rats: towards chromium-containing therapeutics. J. Biol. Inorg. Chem. 4, 838–845 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Sun, B. J. Clodfelder, A. A. Shute, et al., The biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ decreases plasma insulin, cholesterol and triglycerides in healthy and type II diabetic rats but not type I diabetic rats. J. Biol. Inorg. Chem. 7, 852–862 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    J. B. Vincent, Elucidating a biological role for chromium at a molecular level. Acc. Chem. Res. 33, 503–510 (2002).CrossRefGoogle Scholar
  11. 11.
    C. M. Davis, A. C. Royer, and J. B. Vincent, Synthetic multinuclear chromium assembly activates insulin receptor kinase activity: functional model for low-molecular-weight chromium-binding substance. Inorg. Chem. 36, 5316–5320 (1997).CrossRefGoogle Scholar
  12. 12.
    O. Wada, G. Y. Wu, A. Yamamoto, et al., Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances. Environ. Res. 32, 228–239 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    A. A. Shute and J. B. Vincent, The stability of the biomimetic cation triaqua-μ-oxohexapropionatotrichromium(III) in vivo in rats. Polyhedron 20, 2241–2252 (2001).CrossRefGoogle Scholar
  14. 14.
    A. A. Shute and J. B. Vincent, The fate of the biomimetic cation triaqua-μ-oxohexapropionatotrichromium(III) in rats. J. Inorg. Biochem. 89, 272–278 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Earnshaw, B. N. Figgis, and J. Lewis, Chemistry of polynuclear compounds. Part VI. Magnetic properties of trimer chromium and iron carboxylates. J. Chem. Soc. A 1656–1663 (1966).Google Scholar
  16. 16.
    R. A. Anderson and M. M. Polansky, Dietary and metabolic effects of trivalent chromium retention and distribution in rats. Biol. Trace Element Res. 50, 97–108 (1995).Google Scholar
  17. 17.
    M. L. Davis-Whiteneck, M. S. Bernice, B. O. Adeleye, et al., Biliary excretion of 51chromium in bile-duct cannulated rats. Nutr. Res. 16, 1009–1015 (1996).CrossRefGoogle Scholar
  18. 18.
    R. A. Anderson and A. S. Kozlovsky, Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am. J. Clin. Nutr. 41, 1177–1183 (1985).PubMedGoogle Scholar
  19. 19.
    K. L. Olin, D. M. Stearns, W. H. Armstrong, et al., Comparative retention/absorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate and 51Cr picolinate in a rat model. Trace Elements Electrolytes 11, 182–186 (1994).Google Scholar
  20. 20.
    R. A. Anderson, N. A. Bryden, M. M. Polansky, et al., Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J. Trace Elements Exp. Med. 9, 11–25 (1996).CrossRefGoogle Scholar
  21. 21.
    K. F. Kingry, A. C. Royer, and J. B. Vincent, Nuclear magnetic resonance studies of chromium(III) pyridinecarboxylate complexes. J. Inorg. Biochem. 72, 79–88 (1998).CrossRefGoogle Scholar
  22. 22.
    G. W. Evans and D. J. Pouchnik, Composition and biological activity of chromium-pyridine carboxylate complexes. J. Inorg. Biochem. 49, 177–187 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    N. E. Chakov, R. A. Collins, and J. B. Vincent, A re-investigation of the electronic spectra of chromium(III) picolinate complexes and high yield synthesis and characterization of Cr2(μ-OH)2(pic)4·5H2O (Hpic=picolinic acid). Polyhedron 18, 2891–2897 (1999).CrossRefGoogle Scholar
  24. 24.
    W. T. Cefalu, Z. Q. Wang, X. H. Zhang, et al., Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr. 132, 1107–1114 (2002).PubMedGoogle Scholar
  25. 25.
    J. K. Speetjens, A. Parand, M. W. Crowder, et al., Low-molecular-weight chromium-binding substance and biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ do not cleave DNA under physiologically-relevant conditions. Polyhedron 18, 2617–2624 (1999).CrossRefGoogle Scholar
  26. 26.
    D. M. Stearns, S. M. Silveira, K. K. Wolf, et al., Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phopshoribosyl transferase locus in Chinese hamster ovary cells. Mutat. Res. 513, 135–142 (2002).PubMedGoogle Scholar
  27. 27.
    D. D. D. Hepburn, J. Xiao, S. Bindom, et al., Nutritional supplement chromium picolinate causes sterility and lethal mutations in Drosophila melanogaster. Proc. Natl. Acad. Sci., USA 100, 3766–3771 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Buffie J. Clodfelder
    • 1
  • Christine Chang
    • 1
  • John B. Vincent
    • 1
  1. 1.Department of Chemistry and Coalition for Biomolecular ProductsThe University of AlabamaTuscaloosa

Personalised recommendations