Biological Trace Element Research

, Volume 97, Issue 1, pp 15–30 | Cite as

Selenium supplementation on plasma glutathione peroxidase activity in patients with end-stage chronic renal failure

  • Bronisław A. Zachara
  • Dominika Koterska
  • Jacek Manitius
  • Leszek Sadowski
  • Andrzej Dziedziczko
  • Anna Salak
  • Wojciech Wasowicz
Article

Abstract

Patients with chronic renal failure (CRF) usually have a lower than healthy level of selenium (Se) in whole blood and plasma. Plasma glutathione peroxidase (GSH-Px) is synthesized mostly in the kidney. In CRF patients, activity of this enzyme is significantly reduced and its reduction increases with the progress of the disease. The aim of the study was to evaluate the effect of Se supplementation to CRF patients at various stages of the disease on Se concentration in blood components and on plasma GSH-Px activity.

The study group comprised 53 CRF patients at various stages of the disease supplemented with Se (200 µg/d for 3 mo as Se-enriched yeast, containing about 70% l-selenomethionine [SeMet]). The control group consisted of 20 healthy subjects. The Se concentration in blood components was measured spectrofluorometrically with 2,3-diaminonaphthalene as a complexing reagent. GSH-Px activity in red cell hemolysates and plasma was assayed by the coupled method with tert-butyl hydroperoxide as a substrate.

The Se concentration in whole blood and plasma of CRF patients is significantly lower as compared with healthy subjects, but similar at all stages of the disease. In the patients’ plasma, total protein and albumin levels are also significantly lower than in healthy subjects. Plasma GSH-Px activity in patients is extremely low, and contrary to Se concentration, it decreases linearly with the increasing stage of the illness. Se-supplied patients show an increased Se concentration in all blood components and at all disease stages, whereas plasma GSH-Px activity is enhanced only at the incipient stage of the disease. Se supply has no effect on plasma GSH-Px activity in uremic patients at the end stage of the disease. Total plasma protein and albumin levels did not change after Se supplementation. Our data seem to show that in patients with CRF lower total protein and albumin levels in plasma may be the chief cause of the low blood and plasma Se concentrations. GSH-Px activity decreases along with the kidney impairment. At the end stage of the disease, Se supplementation in the form of Se-enriched yeast has no effect on the increase in plasma GSH-Px activity.

Index Entries

Blood chronic renal failure glutathione peroxidase plasma selenium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. P. Rayman, Dietary selenium: time to act, Br. Med. J. 314, 387–388 (1997).Google Scholar
  2. 2.
    M. P. Rayman, The argument for increasing selenium intake, Proc. Nutr. Soc. 61, 203–215 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    R. F. Burk and K. E. Hill, Orphan selenoproteins, BioEssays 21, 231–237 (1999).PubMedCrossRefGoogle Scholar
  4. 4.
    J. R. Arthur and G. J. Beckett, Newer aspects of micronutrients in at risk groups. New metabolic roles for selenium, Proc. Nutr. Soc. 53, 615–624 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Dworkin, S. Weseley, W. S. Rosenthal, et al., Diminished blood selenium levels in renal failure patients on dialysis: correlations with nutritional status, Am. J. Med. Sci. 30, 6–12 (1987).CrossRefGoogle Scholar
  6. 6.
    M. J. Richard, J. Arnaud, C. Jurkovitz, et al., Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure, Nephron 57, 10–15 (1991).PubMedGoogle Scholar
  7. 7.
    J. W. Foote, L. J. Hinks, and B. Lloyd, Reduced plasma and white blood cell selenium levels in haemodialysis patients, Clin. Chim. Acta 164, 323–328 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    B. A. Zachara, U. Trafikowska, A. Adamowicz, et al., Selenium, glutathione peroxidases, and some other parameters in blood of patients with chronic renal failure, J. Trace Elements Med. Biol. 15, 161–166 (2001).CrossRefGoogle Scholar
  9. 9.
    S. Yoshimura, H. Suemizu, Y. Nomoto, et al., Plasma glutathione peroxidase deficiency caused by renal dysfunction, Nephron 73, 207–211 (1996).PubMedGoogle Scholar
  10. 10.
    H. E. Roxborough, C. Mercer, D. McMaster, et al., Plasma glutathione peroxidase activity is reduced in haemodialysis patients, Nephron 81, 278–283 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Zima, S. Stipek, J. Crkovska, et al., Antioxidant enzymes—superoxide dismutase and glutathione peroxidase—in haemodialyzed patients, Blood Purif. 14, 257–264 (1996).PubMedGoogle Scholar
  12. 12.
    M. C. Martin-Mateo, E. del Canto-Jafiez, and M. J. Barrero-Martinez, Oxidative stress and enzyme activity in ambulatory renal patients undergoing continuous peritoneal dialysis, Renal Failure 20, 117–124 (1998).PubMedGoogle Scholar
  13. 13.
    F. Bulucu, A. Vural, A. Aydin, et al., Oxidative stress status in adults with nephrotic syndrome, Clin. Nephrol. 53, 169–173 (2000).PubMedGoogle Scholar
  14. 14.
    I. Ceballos-Picot, V. Witko-Sarsat, M. Merad-Boudia, et al., Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure, Free Radical Biol. Med. 21, 845–853 (1996).CrossRefGoogle Scholar
  15. 15.
    N. Avissar, D. B. Ornt, Y. Yagil, et al., Human kidney proximal tubules are the main source of plasma glutathione peroxidase, Am. J. Physiol. 266 (Cell Physiol. 35), C367-C375 (1994).PubMedGoogle Scholar
  16. 16.
    B. A. Zachara, A. Trafikowska, J. Manitius, et al., Third International Meeting “Advances in Trace Elements, Minerals and Vitamins in Humans: Functional and Clinical Aspects,” Monastir, Tunisia 2002, Abstracts p. 49.Google Scholar
  17. 17.
    B. A. Zachara, A. Adamowicz, U. Trafikowska, et al., Decreased plasma glutathione peroxidase activity in uremic patients, Nephron 84, 278–279 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    G. N. Schrauzer, Nutritional selenium supplementation: product types, quality, and safety, J. Am. Coll. Nutr. 20, 1–4 (2001).PubMedGoogle Scholar
  19. 19.
    M. A. Beilstein and P. D. Whanger, Metabolism of selenomethionine and effects of interacting compounds by mammalian cells in culture, J. Inorg. Biochem. 29, 137–152 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    N. Esaki, T. Nakamura, H. Tanaka, et al., Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine, J. Biol. Chem. 257, 4386–4391 (1982).PubMedGoogle Scholar
  21. 21.
    C. Ip, Differential effects of dietary methionine on the biopotency of selenomethionine and selenite in cancer chemoprevention, J. Natl. Cancer Inst. 80, 258–262 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    B. A. Zachara, D. Koterska, A. Trafikowska, et al., The effect of selenium supplementation on plasma glutathione peroxidase activity in patients with different stages of chronic renal failure, in Macro and Trace Elements; 21 Workshop, M. Anke, R. Muller, U. Schafer, and M Stoeppler, eds., 2002, pp. 945–951.Google Scholar
  23. 23.
    B. A. Zachara, M. Sklodowska, W. Wasowicz, et al., Selenium status, glutathione peroxidase activity and lipid peroxides concentration in blood of Polish population. III. Effect of age and sex in healthy adults, in Elements in Health and Disease, M. Said, M. A. Rahman, and L. A. D’Silva, eds., Hamdard University Press, Karachi, Pakistan, pp. 501–512 (1989).Google Scholar
  24. 24.
    J. H. Watkinson, Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene, Anal. Chem. 38, 92–97 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    D. E. Paglia and W. H. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–169 (1967).PubMedGoogle Scholar
  26. 26.
    J. Ringstad, B. Jacobsen, S. Tretli, et al., Serum selenium concentration associated with risk of cancer, J. Clin. Pathol. 41, 454–457 (1988).PubMedGoogle Scholar
  27. 27.
    B. Tiran, Selen ein essentielles Spurenelement, Wien. Klin. Wochenschr. 109, 3–6 (1997).PubMedGoogle Scholar
  28. 28.
    W. Wasowicz, J. Gromadzinska, K. Rydzynski, et al., Selenium status of low-selenium area residents: Polish experience, Toxicol. Lett. 137, 95–101 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    B. A. Zachara and W. Wasowicz, Selenium concentration in blood components of Polish sub-population and in some other countries, in Arsenium and Selenium in the Environment—Ecological and Methodological Problems, A. Kabata-Pendias, and B. Szteke, eds., Polish Academy of Sciences, Warsaw, pp. 157–166 (1994) (in Polish).Google Scholar
  30. 30.
    G.-Q. Yang, L.-Z. Zhu, S.-J. Liu, et al., Human selenium requirement in China, in Selenium in Biology and Medicine, Part B, G. F. Combs, Jr., J. E. Spallholz, O. A. Levander, and J. E. Oldfield, eds., Van Nostrand Reinhold, New York, pp. 589–607 (1987).Google Scholar
  31. 31.
    A. Madaric, J. Kadrabova, and E. Ginter, Selenium concentration in plasma and erythrocytes in healthy Slovak population, J. Trace Elements Electrolytes Health Dis. 8, 43–47 (1994).Google Scholar
  32. 32.
    Z. Maksimovic, V. Jovic, I. Djujic, et al., Selenium deficiency in Yugoslavia and possible effects on health, Environ. Geochem. Health 14, 107–111 (1992).CrossRefGoogle Scholar
  33. 33.
    B. Tiran, A. Tiran, W. Petek, et al., Selenium status of healthy children and adults in Styria (Austria). Trace Elements Med. 9, 75–79 (1992).Google Scholar
  34. 34.
    J. Kalouskova, J. Dedina, L. Pavlik, et al., Selenium concentration in blood of the Czech Population, Cas. Lek. Ces. 127, 277–281 (1987).Google Scholar
  35. 35.
    G. Alfthan, G. Bogye, A. Aro, et al., The human selenium status in Hungary, J. Trace Elements Electrolytes Health Dis. 6, 233–238 (1992).Google Scholar
  36. 36.
    M. Bonomini, S. Forster, F. de Risio, et al., Effects on selenium supplementation on immune parameters in chronic uraemic patients on hemodialysis, Nephrol. Dial. Transplant. 10, 1654–1661 (1995).PubMedGoogle Scholar
  37. 37.
    K. Milly, L. Witt, C. Diskin, et al., Selenium in renal failure patients. Nephron 61, 139–144 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    J. M. Marchante-Gayon, J. E. Sanchez-Uria, and A. Sanz-Medel, Serum and tissue selenium contents related to renal disease and colon cancer as determined by electrothermal atomic absorption spectrometry, J. Trace Elements Med. Biol. 10, 229–236 (1996).Google Scholar
  39. 39.
    J. T. Deagan, J. A. Butler, B. A. Zachara, et al., Determination of the distribution of selenium between glutathione peroxidase, selenoprotein P, and albumin in plasma, Anal. Biochem. 208, 176–181 (1993).CrossRefGoogle Scholar
  40. 40.
    K. A. Temple, A. M. Smith, and D. B. Cockram, Selenate-supplemented nutritional formula increases plasma selenium in hemodialysis patients, J. Renal Nutr. 10, 16–23 (2000).Google Scholar
  41. 41.
    H. Koyama, K. Omura, A. Ejima, et al., Separation of selenium-containing proteins in human and mouse plasma using tandem high-performance liquid chromatography columns coupled with inductively coupled plasma-mass spectrometry, Anal. Biochem. 267, 84–91 (2000).CrossRefGoogle Scholar
  42. 42.
    M. Persson Moschos, Selenoprotein P. Cell. Mol. Life Sci. 57, 1836–1845 (2000).CrossRefGoogle Scholar
  43. 43.
    R. Read, T. Bellow, J.-G. Yang, et al., Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum, J. Biol. Chem. 265, 17,899–17,905 (1990).Google Scholar
  44. 44.
    M. J. Richard, J. Arnaud, K. Sirajeddine, et al., Zinc, selenium and lipid peroxides levels in hemodialyzed patients, in Trace Elements in Man and Animals 7 (TEMA-7), B. Momcilovic (ed.), University of Zagreb, Zagreb, pp. 12.7–12.9 (1991).Google Scholar
  45. 45.
    G. Bellisola, G. C. Guidi, G. Cinque, et al., Selenium status and plasma glutathione peroxidase in patients with IgA nephropathy, J. Trace Elements Med. Biol. 10, 189–196 (1996).Google Scholar
  46. 46.
    J. C. Whitin, D. M. Tham, S. Bhamre, et al., Plasma glutathione peroxidase and its relationship to renal proximal tubule function, Mol. Genet. Metab. 65, 238–245 (1998).PubMedCrossRefGoogle Scholar
  47. 47.
    K. M. Brown and J. H. Arthur, Selenium, selenoproteins and human health: a review, Public Health Nutr. 4, 593–599 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    J. R. Arthur, The glutathione peroxidases, Cell. Mol. Life Sci. 57, 1825–1835 (2002).CrossRefGoogle Scholar
  49. 49.
    M. D. Saint-Georges, D. J. Bonnefont, B. A. Bourlery, et al., Correction of selenium deficiency in hemodialyzed patients, Kidney Int. 36 (Suppl. 27), S-274–S-277 (1989).Google Scholar
  50. 50.
    G. Bellisola, G. Perona, S. Galassini, et al., Plasma selenium and glutathione peroxidase activities in individuals living in the Veneto region of Italy, J. Trace Elements Electrolytes Health Dis. 7, 242–244 (1993).Google Scholar
  51. 51.
    J. S. Koenig, M. Fischer, E. Bulant, et al., Antioxidant status in patients on chronic hemodialysis therapy: impact of parenteral selenium supplementation, Wien. Klin. Wochenschr. 109, 13–19 (1997).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Bronisław A. Zachara
    • 1
  • Dominika Koterska
    • 2
  • Jacek Manitius
    • 3
  • Leszek Sadowski
    • 4
  • Andrzej Dziedziczko
    • 2
  • Anna Salak
    • 2
  • Wojciech Wasowicz
    • 1
  1. 1.Department of Toxicology and CarcinogenesisNofer Institute of Occupational MedicineLodzPoland
  2. 2.Departments of Internal Medicine and AlergologyMedical UniversityBydgoszczPoland
  3. 3.Department of Nephrology and Internal MedicineMedical UniversityBydgoszczPoland
  4. 4.Department of NephrologyMunicipal HospitalInowroclawPoland

Personalised recommendations