Biological Trace Element Research

, Volume 94, Issue 2, pp 167–177 | Cite as

Effects of La3+ on growth, transformation, and gene expression of Escherichia coli

  • Li Wenhua
  • Zhao Ruming
  • Xie Zhixiong
  • Chen Xiangdong
  • Shen Ping


Rare earth elements have been emitted into the environment largely as fertilizer components. This has caused much fear about whether they would influence our environment, especially on the metabolism and genetics of microorganisms. In this article, the trivalent ion of a rare earth element, lanthanum, was studied for the effects on growth, transformation, and gene expression of Escherichia coli. The results showed that La3+ at concentrations from 50 to 150 µg/mL stimulated the endogenic metabolism and ectogenic metabolism, but had few effects on gene expression. La3+ at lower concentrations from 0.5 to 30 µg/mL inhibit intensively E. coli-absorbing external DNA, decreasing the transformation efficiency. It is also supported by observations using transmission electron microscopy. Our results are significant in understanding the function of rare earth elements to microorganisms and assessing the risk of application of rare earth compounds.

Index Entries

Rare earth elements La3+ Escherichia coli environment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-Z. Ni, Bioinorganic Chemistry of Rare-earth Elements, Science Press, Beijing (1995).Google Scholar
  2. 2.
    C. H. Evans, Biochemistry of the Lanthanides, Plenum, New York (1990).Google Scholar
  3. 3.
    A. Peng and W.-H. Wang, eds. Environmental Bioinorganic Chemistry, Beijing University Press, Beijing (1991).Google Scholar
  4. 4.
    R.-M. Zhao, Y. Liu, Z.-X. Xie, et al., A microcalorimetric method for studying the biological effects of La3+ on E. coli, J. Biochem. Biophys. Methods 46, 1–9 (2000).CrossRefGoogle Scholar
  5. 5.
    R.-M. Zhao, Y. Liu, Z.-X. Xie, et al., Microcalorimetric study of the action of Ce(III) ions on the growth of E. coli, Biol Trace Element Res. 86, 167–175 (2002).CrossRefGoogle Scholar
  6. 6.
    C.-L. Xie, H.-K. Tang, Z.-H. Song, et al., Microcalorimetric study of bacterial growth, Thermochem. Acta 123, 33–41 (1988).CrossRefGoogle Scholar
  7. 7.
    J. Sambrook, E. F. Fritsch, T. Maniatis, et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  8. 8.
    J. H. Miller, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1972).Google Scholar
  9. 9.
    L.-X. Zhu, N.-Q. Cheng, and X.-C. Gao, Electron Microscopy Techniques in Biology, Beijing University Press, Beijing (1983).Google Scholar
  10. 10.
    P. Shen, X.-R. Fan, and G.-W. Li, Laboratory Experiments in Microbiology, 3rd ed., Higher Education Press, Beijing (1999).Google Scholar
  11. 11.
    P. Shen, Microbiology, High Education Press, Beijing (2000).Google Scholar
  12. 12.
    B. Baur, K. Hanselmann, and W. Schlimme, Genetic transformation in freshwater: Escherichia coli is able to develop natural competence, Appl. Environ. Microbiol. 62, 3673–3678 (1996).Google Scholar
  13. 13.
    R. B. Sykes and M. Mathew, The beta-lactamases of gram-negative bacteria and their role in resistance to bata-lactam antibiotics, J. Antimicrob. Chemother. 2, 115 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    M. T. Madigan, J. M. Martinko, and J. Parker, Biology of microorganisms, 8th ed., Prentice-Hall, Englewood Cliffs, NJ (1997).Google Scholar
  15. 15.
    K. M. Nielsen, M. Wreelet, and T. N. Berg, Natural tramsformation and availability of transforming DNA to acinetobacter calcoaceticus in soil microcosisms, Appl. Environ. Microbiol. 63, 1945–1952 (1997).PubMedGoogle Scholar
  16. 16.
    J. Ravi, C. R. Maria, and A. L. James, Horizontal gene transfer among genomes: the conplexity hypothesis, Proc. Natl. Acad. Sci. USA 96, 3801–3806 (1999).CrossRefGoogle Scholar
  17. 17.
    C. R. Woese, O. Kandler, and M. L. Wheelis, Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya, Proc. Natl. Acad. Sci. USA 87, 4576–4579 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    D.L.C. Fernando and D. Julian, Horizontal gene transfer and the origin of species: lessons from bacteria, Trends Microbiol. 8, 128–132 (2000).CrossRefGoogle Scholar
  19. 19.
    C. A. Ana, G.-B. Gracia, R.-T. Marta, et al., Transformation of Escherichia coli with DNA from Saccharomyces cerevisiae cell lysates, Appl. Environ. Microbiol. 65, 5303–5306 (1999).Google Scholar
  20. 20.
    M. G. Lorenz and W. Wackernagel, Natural genetics in the enviroment, Microbiol. Rev. 58, 565–595 (1994).Google Scholar
  21. 21.
    M. W. Ho, T. Traavik, R. Olsvik, et al., Gene technology and gene ecology of infectious disease, Microb. Ecol. Health Dis. 10, 33–59 (1998).CrossRefGoogle Scholar
  22. 22.
    T. Eva, M. Max, S. Dirk, et al., Gene escape model: transfer of metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples, 56, 2471–2479 (1990).Google Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Li Wenhua
    • 1
  • Zhao Ruming
    • 1
  • Xie Zhixiong
    • 1
  • Chen Xiangdong
    • 1
  • Shen Ping
    • 1
  1. 1.College of Life SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations