Biological Trace Element Research

, Volume 94, Issue 1, pp 1–31 | Cite as

Iron deficiency

Causes, consequences, and strategies to overcome this nutritional problem
  • José R. Boccio
  • Venkatesh Iyengar


Iron deficiency and anemia affect a substantial portion of the world’s population, provoking severe health problems to the people suffering these conditions, as well as important economic losses to the regions in which this nutritional deficiency is significant. In this work, the principal causes and consequences produced by this deficiency are discussed, as well as the different strategies that can be applied in order to prevent and solve this nutritional problem.

Index Entries

Iron anemia fortification supplementation food 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Viteri, Iron supplementation for the control of iron deficiency in populations at risk, Nutr. Rev. 55, 195–209 (1997).PubMedCrossRefGoogle Scholar
  2. 2.
    WHO, Commission on Health and Enviroment, Report of the Panel on Food and Agriculture, World Health Organization, Geneva (1992).Google Scholar
  3. 3.
    OPS/OMS, First Report on the World Nutrition Situation. A Report Compiled from Information Available to the United Nations Agencies of the ACC/SNC, OPS/OMS, Washington, DC (1987).Google Scholar
  4. 4.
    P. Dallman, Iron. Present Knowledge in Nutrition, 6th ed., International Life Sciences Institute, Washington DC (1990).Google Scholar
  5. 5.
    D. Rose, D. Smallwood, and J. Blaylock, Socio-economic factors associated with the iron intake of preschoolers in the United States, Nutr. Res. 15, 1297–1309 (1995).Google Scholar
  6. 6.
    E. Calvo and N. Gnazzo, Prevalence of iron deficiency in children aged 9–24 mo from a large urban area of Argentina, Am. J. Clin. Nutr. 52, 534–540 (1990).PubMedGoogle Scholar
  7. 7.
    M. Layrisse and M. García-Casal, Estrategia para la prevención y disminución de la prevalencia de deficiencia de hierro a través de la alimentación, Deficiencia de Hierro, CESNI, Buenos Aires, pp. 163–175 (1997).Google Scholar
  8. 8.
    E. Monsen, L. Hallberg, M. Layrisse, et al., Estimation of available dietary iron, Am. J. Clin. Nutr. 31, 134–141 (1978).PubMedGoogle Scholar
  9. 9.
    M. Layrisse, C. Martinez-Torres, I. Leets, et al., Effect of histidine, cysteine, glutathione or beef on iron absorption in humans, J. Nutr. 114, 217–223 (1984).PubMedGoogle Scholar
  10. 10.
    P. Taylor, C. Martinez-Torres, E. Romano, et al., The effect of cysteine-containing peptides related during meat digestion on iron absorption in humans, Am. J. Clin. Nutr. 43, 68–71 (1986).PubMedGoogle Scholar
  11. 11.
    D. Siegenberg, R. Baynes, T. Bothwell, et al., Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption, Am. J. Clin. Nutr. 53, 537–541 (1991).PubMedGoogle Scholar
  12. 12.
    FAO/OMS, Necesidades de Vitamina A, Hierro, Folato y Vitamina B 12. Informe de Una Consulta Mixta FAO/OMS de Expertos, Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma (1991).Google Scholar
  13. 13.
    T. Atukorala, L. Silva, W. Dechering, et al., Evaluation of effectiveness of iron-folate supplementation and anthielminthic therapy against anemia in pregnancy. A study in the plantation sector of Sri Lanka. Am. J. Clin. Nutr. 60, 286–292 (1994).PubMedGoogle Scholar
  14. 14.
    R. Stoltzfus, M. Dreyfuss, H. Chwaya, et al., Hookworm control as a strategy to prevent iron deficiency, Nutr. Rev. 55, 223–232 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Li, X. Chen, H. Yan, et al., Functional consequences of iron supplementation in iron-deficient female cotton mill workers in Beijing, China, Am. J. Clin. Nutr. 59, 908–913 (1994).PubMedGoogle Scholar
  16. 16.
    J. Hunt, C. Zito, J. Erjavec, et al., Severe or marginal iron deficiency affects spontaneous physical activity in rats, Am. J. Clin. Nutr. 59, 413–418 (1994).PubMedGoogle Scholar
  17. 17.
    G. Brooks, Hierro, metabolismo muscular y actividad física, Deficiencia de Hierro, CESNI. Buenos Aires. pp. 67–85 (1997).Google Scholar
  18. 18.
    S. Basta, D. Soekirman, D. Karyadi, et al., Iron deficiency anemia and the productivity of adult males in Indonesia, Am. J. Clin. Nutr. 32, 916–925 (1979).PubMedGoogle Scholar
  19. 19.
    World Bank, Enriqueciendo la Vida: Lucha Contra la Malnutrición por Deficiencia de Vitaminas y Minerales en los Países en Desarrollo, World Bank, Washington, DC (1996).Google Scholar
  20. 20.
    J. Beard, B. Tobin, and W. Green, Evidence for thyroid hormone deficiency in iron-deficient anemic rats, J. Nutr. 119, 772–778 (1989).PubMedGoogle Scholar
  21. 21.
    J. Beard, D. Brigham, S. Kelley, et al., Plasma thyroid hormone kinetics are altered in iron-deficient rats, J. Nutr. 128, 1401–1408 (1998).PubMedGoogle Scholar
  22. 22.
    D. Brigham and J. Beard, Iron and thermoregulation: a review, Crit. Rev. Food Sci. Nutr. 36, 747–763 (1986).Google Scholar
  23. 23.
    I. Andraca, M. Castillo, and T. Walter, Desarrollo psicomotor y conducta en lactantes anémicos por deficiencia de hierro, Deficiencia de Hierro, CESNI, Buenos Aires, pp. 107–117 (1997).Google Scholar
  24. 24.
    I. Wauben and P. Wainwright, The influence of neonatal nutrition on behavioral development: a critical appraisal, Nutr. Rev. 57, 35–44 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    B. Lozoff, G. Brittenham, and A. Wolf, Iron deficiency anemia and iron therapy effects on infant developmental test performance, Pediatrics. 79, 981–995 (1987).PubMedGoogle Scholar
  26. 26.
    T. Walter, M. Olivares, F. Pizarro, et al., Iron, anemia and infection, Nutr. Rev. 55, 111–124 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    N. Scrimshaw and J. San Giovanni, Synergism of nutrition, infection and immunity: an overview, Am. J. Clin. Nutr. 66, 464S-477S (1997).PubMedGoogle Scholar
  28. 28.
    S. Fishbane, Review of issues relating to iron and infection, Am. J. Kidney Dis. 34, 47S-52S (1999).Google Scholar
  29. 29.
    R. Goyer, Nutrition and metal toxicity, Am. J. Clin. Nutr. 61, 646S-650S (1995).PubMedGoogle Scholar
  30. 30.
    R. Yip and P. Dallman, Developmental changes in erythrocyte protoporphyrin: roles of iron deficiency and lead toxicity, J. Pediatr. 104, 710–713 (1984).PubMedGoogle Scholar
  31. 31.
    W. Watson, J. Morrison, M. Bethel, et al., Food iron and lead absorption in humans, Am. J. Clin. Nutr. 44, 248–256 (1986).PubMedGoogle Scholar
  32. 32.
    L. Allen, Pregnancy and iron deficiency: unresolved issues, Nutr. Rev. 55, 91–101 (1997).PubMedCrossRefGoogle Scholar
  33. 33.
    D. Taylor, C. Mallen, N. McDouhgall, et al., Effect of iron supplementation on serum ferritin levels during and after pregnancy, Br. J. Obstet. Gynecol. 89, 1011–1017 (1982).Google Scholar
  34. 34.
    K. Prema, B. Ramalakshmi, R. Madhavapeddi, et al., Effect of intramuscular iron therapy in anaemic pregnant women, Indian J. Med. Res. 75, 534–540 (1982).PubMedGoogle Scholar
  35. 35.
    A. Kandoy, B. Bhatia, L. Pandey, et al., Cellular immunity status in anaemia in pregnancy, Indian J. Med. Res. 94, 11–15 (1991).Google Scholar
  36. 36.
    T. Scholl, High third-trimester ferritin concentration: associations with very preterm delivery, infection, and maternal nutritional status, Obstet. Gynecol. 92, 116–166 (1998).Google Scholar
  37. 37.
    T. Scholl, M. Hediger, R. Fisher, et al., Anemia vs. iron deficiency: increased risk of preterm delivery in a prospective study, Am. J. Clin. Nutr. 55, 985–988 (1992).PubMedGoogle Scholar
  38. 38.
    I. Bolt, D. Diallo, and G. Tchernia, Iron deficiency in pregnancy: effects on the newborn, Curr. Opin. Hematol. 6, 65–70 (1999).Google Scholar
  39. 39.
    P. Preziosi, A. Prual, P. Galan, et al., Effect of iron supplementation on the iron status of pregnant women: consequences for newborns, Am. J. Clin. Nutr. 66, 1178–1182 (1997).PubMedGoogle Scholar
  40. 40.
    N. Millman, T. Bergholt, K. Byg, et al., Iron status and iron balance during pregnancy. A critical reappraisal of iron supplementation, Acta Obstet. Gynecol. Scand. 78, 749–757 (1999).Google Scholar
  41. 41.
    I. Darnton-Hill, Developing industrial-governmental-academic partnerships to address micronutrient malnutrition, Nutr. Rev. 55, 76–81 (1997).PubMedCrossRefGoogle Scholar
  42. 42.
    D. Alnwick, Combating micronutrient deficiencies: problems and perspectives, Proc. Nutr. Soc. 57, 137–147 (1998).PubMedGoogle Scholar
  43. 43.
    B. Underwood, Perspectives from micronutrient malnutrition elimination/eradication programmes, Bull. WHO 76, 34S-37S (1998).Google Scholar
  44. 44.
    J. Cook and M. Reusser, Iron fortification: an update, Am. J. Clin. Nutr. 38, 648–659 (1983).PubMedGoogle Scholar
  45. 45.
    A. Stekel, M. Olivares, M. Cayazzo, et al., Prevention of iron deficiency by milk fortification II. A field trial with a full-fat acidified milk, Am. J. Clin. Nutr. 47, 265–269 (1988).PubMedGoogle Scholar
  46. 46.
    T. Walter, P. Dallman, F. Pizarro, et al., Effectiveness of iron-fortified infant cereal in prevention of iron deficiency anemia, Pediatrics 91, 976–982 (1993).PubMedGoogle Scholar
  47. 47.
    R. Gibson, Technological approaches to combating iron deficiency, Eur. J. Clin. Nutr. 51, 25S-27S (1997).Google Scholar
  48. 48.
    P. Charoenlarp, S. Dhanamitta, R. Kaewvichit, et al., A WHO collaborative study on iron supplementation in Burma and Thailand, Am. J. Clin. Nutr. 47, 280–297 (1988).PubMedGoogle Scholar
  49. 49.
    K. Schumann, B. Elsenhans, and A. Maurer, Iron supplementation, J. Trace Elements Med. Biol. 12, 129–140 (1988).Google Scholar
  50. 50.
    F. Viteri, A new concept in the control of iron deficiency: community-based preventive supplementation of at-risk groups by the weekly intake of iron supplements, Biomed. Environ. Sci. 11, 46–60 (1998).PubMedGoogle Scholar
  51. 51.
    K. Singh, Y. Fong, and S. Arulkumaran, The role of prophylactic iron supplementation in pregnancy, Int. J. Food Sci. Nutr. 49, 383–389 (1998).PubMedCrossRefGoogle Scholar
  52. 52.
    W. Schultink, M. Ree, P. Matulessi, et al., Low compliance with an iron-supplementation program: a study among pregnant women in Jakarta, Indonesia, Am. J. Clin. Nutr. 57, 135–139 (1993).PubMedGoogle Scholar
  53. 53.
    J. Cook and M. Reddy, Efficacy of weekly compared with daily iron supplementation, Am. J. Clin. Nutr. 62, 117–120 (1995).PubMedGoogle Scholar
  54. 54.
    A. Goodman Gilman, The Pharmacological Basis of Therapeutics, Pergamon, Elmsford, NY (1996).Google Scholar
  55. 55.
    P. Dallman, Progress in the prevention of iron deficiency in infants, Acta Paediatr. Scand. 365(Suppl.), 28–37 (1990).Google Scholar
  56. 56.
    K. Vijayaraghvan, Strategies for control of micronutrient malnutrition, Indian J. Med. Res. 102, 216–222 (1995).Google Scholar
  57. 57.
    F. Trowbridge, S. Harris, J. Cook, et al., Coordinated strategies for controlling micronutrient malnutrition: a technical workshop, J. Nutr. 123, 77S-87S (1993).Google Scholar
  58. 58.
    R. Yip, The challenge of improving iron nutrition: limitations and potentials of major intervention approaches, Eur. J. Clin. Nutr. 51, 16S-24S (1997).Google Scholar
  59. 59.
    W. Freire, Iron deficiency anemia: PHAO/WHO strategies to fight it, Salud Publica Mex. 40, 199–205 (1998).PubMedGoogle Scholar
  60. 60.
    I. Macdougall, Strategies for iron supplementation: oral versus intravenous, Kidney Int. 69(Suppl.), 61–66 (1999).Google Scholar
  61. 61.
    F. Gburek and B. Kornhuber, Oral iron therapy in infancy and childhood, Monatsschr. Kinderheilkd. 123, 537–544 (1975).PubMedGoogle Scholar
  62. 62.
    F. Fochi, M. Ciampini, and G. Ceccarelli, Efficacy of iron therapy: a comparative evaluation of four iron preparations administered to anaemic pregnant women, J. Int. Med. Res. 13, 1–11 (1985).PubMedGoogle Scholar
  63. 63.
    M. Hernández Garcia, Anemia ferropénica, Medicine 10, 545–554 (1993).Google Scholar
  64. 64.
    J. Reeves and R. Yip, Lack of adverse side effects of oral ferrous sulfate therapy in 1-year-old infants, Pediatrics 75, 352–355 (1985).PubMedGoogle Scholar
  65. 65.
    L. Davisson, A. Almgren, B. Sandstrom, et al., Zinc absorption in adult humans: the effect of iron fortification, Br. J. Nutr. 74, 417–425 (1995).Google Scholar
  66. 66.
    S. Lynch, Interaction with other nutrients, Nutr. Rev. 55, 102–110 (1997).PubMedCrossRefGoogle Scholar
  67. 67.
    V. Shatrugna, L. Raman, U. Kailash, et al., Effect of dose and formulation on iron tolerance in pregnancy, Natl. Med. J. India 12, 18–20 (1999).PubMedGoogle Scholar
  68. 68.
    R. Dionigi, R. Guaglio, A. Bonera, et al., Clinical-pharmacological aspect, application and effectiveness of total parenteral nutrition in surgical patients, Int. J. Clin. Pharmacol. Biopharm. 17, 107–118 (1979).PubMedGoogle Scholar
  69. 69.
    F. Haschkel and N. Javaid, Nutritional anemias, Acta Paediatr. Scand. 374(Suppl.), 38–44 (1991).Google Scholar
  70. 70.
    R. Clarke, Micronutrient Fortification of Food: Technology and Quality Control, FAO, Rome (1995).Google Scholar
  71. 71.
    R. Hurrell, Preventing iron deficiency through food fortification, Nutr. Rev. 55, 210–222 (1997).PubMedCrossRefGoogle Scholar
  72. 72.
    E. Calvo, E. Hertrampf, S. de Pablo, et al., Haemoglobin-fortified cereal: an alternative weaning food with high iron bioavailabily, Eur. J. Clin. Nutr. 43, 237–243 (1989).PubMedGoogle Scholar
  73. 73.
    G. Pena, F. Pizarro, and E. Hertrampf, Contribution of iron of bread to the Chilean diets, Rev. Med. Chil. 19, 753–757 (1991).Google Scholar
  74. 74.
    T. Walter, E. Hertrampf, F. Pizarro, et al., Effect of bovine-hemoglobin-fortified cookies on iron status of school children: a nationwide program in Chile, Am. J. Clin. Nutr. 57, 190–194 (1993).PubMedGoogle Scholar
  75. 75.
    M. Layrisse, J. Chaves, M. Castellano, et al., Early response to the effect of iron fortification in the Venezuelan population, Am. J. Clin. Nutr. 64, 903–907 (1996).PubMedGoogle Scholar
  76. 76.
    I. Darnton-Hill, J. Mora, H. Weinstein, et al., Iron and folate fortification in the Americas to prevent and control micronutrient malnutrition: an analysis, Nutr. Rev. 57, 25–31 (1999).PubMedCrossRefGoogle Scholar
  77. 77.
    D. Derman, T. Bothwell, J. Torrance, et al., Iron absorption from maize (Zea mays) and sorghum (Sorghum vulgare) beer, Br. J. Nutr. 43, 271–279 (1980).PubMedGoogle Scholar
  78. 78.
    M. Gillooly, T. Bothwell, R. Charlton, et al., Factors affecting the absorption of iron from cereals, Br. J. Nutr. 51, 37–46 (1984).PubMedGoogle Scholar
  79. 79.
    L. Hallberg, L. Rossander, and A. Skanberg, Phytates and the inhibitory effect of bran on iron absorption in man, Am. J. Clin. Nutr. 45, 988–996 (1987).PubMedGoogle Scholar
  80. 80.
    M. Brune, L. Rossander-Hulten, L. Hallberg, et al., Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups, J. Nutr. 122, 442–449 (1992).PubMedGoogle Scholar
  81. 81.
    L. Hallberg, M. Brune, and L. Rosander, Low bioavailability of carbonyl iron in man: studies on iron fortification of wheat flour, Am. J. Clin. Nutr. 43, 59–67 (1986).PubMedGoogle Scholar
  82. 82.
    S. Fomon, Reflections on infant feeding in the 1970s and 1980s, Am. J. Clin. Nutr. 46, 171–182 (1987).PubMedGoogle Scholar
  83. 83.
    R. Hurrell, D. Furniss, J. Burri, et al., Iron fortification of infant cereals: a proposal for the use of ferrous fumarate or ferrous succinate, Am. J. Clin. Nutr. 49, 1274–1282 (1989).PubMedGoogle Scholar
  84. 84.
    A. Davis and T. Bolin, Iron fortification of milk powder, Med. J. Aust. 1, 359–390 (1976).PubMedGoogle Scholar
  85. 85.
    A. Stekel, M. Olivares, F. Pizarro, et al., Absorption of fortification iron from milk formulas in infants, Am. J. Clin. Nutr. 43, 917–922 (1986).PubMedGoogle Scholar
  86. 86.
    R. Hurrell, M. Reddy, S. Dassenko, et al., Ferrous fumarate fortification of a chocolate drink powder, Br. J. Nutr. 65, 271–283 (1991).PubMedGoogle Scholar
  87. 87.
    M. Torres, K. Sato, Y. Juliano, et al., Leche en polvo enriquecida con hierro y ácido ascórbico como una medida de intervención para el tratamiento de la anemia por deficiencia de hierro en niños vistos en la unidad de cuidados intensivos, Arch. Latinoam. Nutr. 46, 113–117 (1996).PubMedGoogle Scholar
  88. 88.
    M. Torres, N. Lobo, K. Sato, et al., Fortification of fluid milk for the prevention and treatment of iron deficiency anemia in children under 4 years of age, Rev. Saude Publica 30, 350–357 (1996).PubMedCrossRefGoogle Scholar
  89. 89.
    AAP, Iron fortification of infant formulas. American Academy of Pediatrics. Committee on Nutrition, Pediatrics 104, 119–123 (1999).Google Scholar
  90. 90.
    M. Galdi, N. Carbone, and M. Valencia, Comparison of ferric glicinate to ferrous sulfate in model infant formulas: kinetics of TBA, lysine and methionine changes, J. Food Sci. 54, 1230–1233 (1989).Google Scholar
  91. 91.
    M. Galdi, N. Carbone, and M. Valencia, Comparison of ferric glicinate to ferrous sulfate in model infant formulas: kinetics of vitamin losses, J. Food Sci. 54, 1530–1533 (1989).Google Scholar
  92. 92.
    T. Peters, L. Apt, and J. Ross, Effect of phosphates upon iron absorption studied in normal human subjects and in an experimental model using dialysis, Gastroenterology 61, 315–322 (1971).PubMedGoogle Scholar
  93. 93.
    D. Carmichael, J. Christopher, J. Hegenauer, et al., Effect of milk and casein on the absorption of supplemental iron in the mouse and chick, Am. J. Clin. Nutr. 28, 487–493 (1975).PubMedGoogle Scholar
  94. 94.
    E. Monsen and J. Cook, Food iron absorption in human subjects IV. The effects of calcium and phosphate salts on the absorption of nonheme iron, Am. J. Clin. Nutr. 29, 1142–1148 (1976).PubMedGoogle Scholar
  95. 95.
    J. Hegenauer, P. Saltman, and D. Ludwing, Degradation of ascorbic acid in iron-supplemented cow’s milk, J. Dairy Sci. 62, 1037–1040 (1979).PubMedCrossRefGoogle Scholar
  96. 96.
    D. Derman, T. Bothwell, A. MacPhail, et al., Importance of ascorbic acid in the absorption of iron from infant foods, Scand. J. Haematol. 25, 193–201 (1980).PubMedCrossRefGoogle Scholar
  97. 97.
    R. Hurrell, S. Lynch, T. Trinidad, et al., Iron absorption in humans as influenced by bovine milk proteins, Am. J. Clin. Nutr. 49, 546–552 (1989).PubMedGoogle Scholar
  98. 98.
    M. Deehr, G. Dallal, T. Smith, et al., Effects of different calcium sources on iron absorption in postmenopausal women, Am. J. Clin. Nutr. 51, 95–99 (1990).PubMedGoogle Scholar
  99. 99.
    J. Cook, S. Dassenko, and P. Whittaker, Calcium supplementation: effect on iron absorption, Am. J. Clin. Nutr. 53, 106–111 (1991).PubMedGoogle Scholar
  100. 100.
    L. Hallberg, M. Brune, and M. Erlandsson, Calcium: effect of different amounts on nonheme and heme-iron absorption in humans, Am. J. Clin. Nutr. 53, 112–119 (1991).PubMedGoogle Scholar
  101. 101.
    L. Hallberg, Does calcium interfere with iron absorption? Am. J. Clin. Nutr. 68, 3–4 (1998).PubMedGoogle Scholar
  102. 102.
    T. Emery, Iron oxidation by casein, Biochem. Biophys. Res. Commun. 182, 1047–1052 (1992).PubMedGoogle Scholar
  103. 103.
    L. Jackson and K. Lee, The effect of dairy products on iron bioavailability, Crit. Rev. Food. Sci. Nutr. 31, 259–270 (1992).PubMedCrossRefGoogle Scholar
  104. 104.
    P. Minotti, S. Buchonski, and D. Miller, Effects of calcium supplementation, calcium source and lactose on iron absorption in the rat, Nutr. Res. 13, 1173–1181 (1993).Google Scholar
  105. 105.
    J. Boccio, M. Zubillaga, R. Caro, et al., New procedure to fortify fluid milk and dairy products with high-bioavailable ferrous sulfate, Nutr. Rev. 55, 240–246 (1997).PubMedCrossRefGoogle Scholar
  106. 106.
    L. Davisson, T. Walczyk, A. Morris, et al., Influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavored milk drink in Jamaican children, Am. J. Clin. Nutr. 67, 873–877 (1998).Google Scholar
  107. 107.
    M. Layrisse, C. Torres, M. Renzi, et al., Sugar as a vehicle for iron fortification, Am. J. Clin. Nutr. 29, 8–18 (1976).PubMedGoogle Scholar
  108. 108.
    F. Viteri, E. Alvarez, R. Batres, et al., Fortification of sugar with iron sodium ethylenediaminotetraacetate (FeNaEDTA) improves iron status in semi rural Guatemalan populations, Am. J. Clin. Nutr. 61, 1153–1163 (1995).PubMedGoogle Scholar
  109. 109.
    P. Disler, S. Lynch, R. Charlton, et al., Studies on the fortification of cane sugar with iron and ascorbic acid, Br. J. Nutr. 34, 141–152 (1975).PubMedGoogle Scholar
  110. 110.
    P. Disler, S. Lynch, R. Charlton, et al., The effect of tea on iron absorption, Gut 16, 193–200 (1975).PubMedGoogle Scholar
  111. 111.
    M. Layrisse, C. Torres, and M. Renzi, Sugar as a vehicle for iron fortification: further studies, Am. J. Clin. Nutr. 29, 274–279 (1976).PubMedGoogle Scholar
  112. 112.
    B. Rao and C. Vijayasarathy, Fortification of common salt with iron: effect of chemical additives on stability and bioavailability, Am. J. Clin. Nutr. 28, 1395–1401 (1975).PubMedGoogle Scholar
  113. 113.
    B. Rao, S. Kathoke, and S. Apte, Mono ferrous acid citrate as an iron fortificant, Br. J. Nutr. 39, 663–665 (1978).PubMedGoogle Scholar
  114. 114.
    H. Nadiger, K. Krisnamachari, A. Naidu, et al., The use of common salt fortified with iron to control anaemia: result of preliminary study, Br. J. Nutr. 43, 45–51 (1980).PubMedGoogle Scholar
  115. 115.
    Working Group on Fortification of Salt with Iron, Use of common salt fortified with iron in the control and prevention of anemia—a collaborative study, Am. J. Clin. Nutr. 35, 1442–1451 (1982).Google Scholar
  116. 116.
    K. Nair, G. Brahman, S. Ranganathan, et al., Impact evaluation of iron & iodine fortified salt, Indian J. Med. Res. 108, 203–211 (1998).PubMedGoogle Scholar
  117. 117.
    K. Uma Pradeep, P. Geervani, and B. Eggum, Common Indian spices: nutrient composition, consumption and contribution to dietary value, Plant Foods Hum. Nutr. 44, 137–148 (1993).Google Scholar
  118. 118.
    R. Lamparelli, A. MacPhail, T. Bothwell, et al., Curry powder as a vehicle for iron fortification: effects on iron absorption, Am. J. Clin. Nutr. 46, 335–340 (1987).PubMedGoogle Scholar
  119. 119.
    R. Baynes, B. Macfarlane, T. Bothwell, et al., The promotive effect of soy sauce on iron absorption in human subjects, Eur. J. Clin. Nutr. 44, 419–424 (1990).PubMedGoogle Scholar
  120. 120.
    FAO, Meat and Meat Products in Human Nutrition in Developing Countries, Food and Agriculture Organization of the United Nations, Rome (1992).Google Scholar
  121. 121.
    M. Salgueiro, M. Zubillaga, A. Lysionek, et al., Strategies to combat zinc and iron deficiency, Nutr. Rev. 60, 52–58 (2002).PubMedGoogle Scholar
  122. 122.
    R. Hurrel, The Mineral Fortification of Foods, Leatherhead, Surrey, UK (1999).Google Scholar
  123. 123.
    S. Fomon, E. Ziegler, R. Rogers, et al., Iron absorption from infant foods, Pediatr. Res. 26, 250–254 (1989).PubMedGoogle Scholar
  124. 124.
    R. Hurrell and J. Cook, Strategies for iron fortification of foods, Trends Food Sci. Technol. 32, 56–61 (1990).Google Scholar
  125. 125.
    B. Skikne, S. Lynch, and J. Cook, Role of gastric acid in food iron absorption, Gastroenterology 81, 1068–1071 (1981).PubMedGoogle Scholar
  126. 126.
    J. Boccio and M. Zubillaga, Helicobacter pylori. Conceptos actuales, Acta Physiologico Pharmacologica et Therapeutica Latinoamericona 47, 194–196 (1997).Google Scholar
  127. 127.
    K. McColl, Helicobacter pylori and acid secretion: where are we now? Eur. J. Gastroenterol. Hepatol. 9, 333–335 (1997).PubMedGoogle Scholar
  128. 128.
    E. El-Omar, K. Oien, A. El-Nujumi, et al., Helicobacter pylori infection and chronic gastric acid hyposecretion, Gastroenterology 113, 15–24 (1997).PubMedGoogle Scholar
  129. 129.
    D. Suharno, C. West, L. Muhila, et al., Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in West Java, Indonesia, Lancet. 342, 1325–1328 (1993).PubMedGoogle Scholar
  130. 130.
    M. García-Casal, M. Layrisse, L. Solano, et al., Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans, J. Nutr. 128, 646–650 (1998).PubMedGoogle Scholar
  131. 131.
    M. García-Casal, I. Leets, and M. Layrisse, Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells, J. Nutr. 130, 5–9 (2000).PubMedGoogle Scholar
  132. 132.
    M. Layrisse, M. Garcia-Casal, L. Solano, et al., New property of vitamin A and beta-carotene on human iron absorption: effect of phytate and polyphenols as inhibitors of iron absorption, Arch. Latinoam. Nutr. 50, 243–248 (2000).PubMedGoogle Scholar
  133. 133.
    M. Pennell, M. Davies, J. Rasper, et al., Biological availability of iron supplements for rats, chicks and humans, J. Nutr. 106, 265–274 (1976).PubMedGoogle Scholar
  134. 134.
    T. Kosonen and M. Mutanen, Relative bioavailability of iron in carbonyl iron and complex ferric orthophosphate to rat, Int. J. Vitam. Nutr. Res. 62, 60–65 (1992).PubMedGoogle Scholar
  135. 135.
    J. Dutra de Oliveira, M. Freitas, J. Ferreira, et al., Iron from complex salts and its bioavailability to rats, Int. J. Vitam. Nutr. Res. 65, 272–275 (1995).Google Scholar
  136. 136.
    I. Motzok, M. Pennell, M. Davies, et al., Effect of particle size on the biological availability of reduced iron, J. Assoc. Off. Anal. Chem. 58, 99–103 (19075).Google Scholar
  137. 137.
    M. Pennell, W. Wiens, J. Rasper, et al., Factors affecting the relative biological value of food grade elemental iron powders for rats and humans, J. Food Sci. 40, 879–883 (1975).Google Scholar
  138. 138.
    E. Rios, R. Hunter, J. Cook, et al., The absorption of iron as supplements in infant cereals and infant formulas, Pediatrics 55, 686–693 (1975).PubMedGoogle Scholar
  139. 139.
    G. Pla, J. Fritz, and C. Rollinson, Relationship between the biological availability and solubility rate of reduced iron, J. Assoc. Off. Anal. Chem. 59, 582–583 (1976).PubMedGoogle Scholar
  140. 140.
    R. Verma, I. Motzok, S. Chen, et al., Effect of storage in flour and of particle size on the bioavailability of elemental iron powders for rats and humans, J. Assoc. Off. Anal. Chem. 60, 759–760 (1976).Google Scholar
  141. 141.
    B. Shah, A. Giroux, and B. Belonje, Specifications for reduced iron as a food additive, J. Agric. Food Chem. 25, 592–594 (1977).PubMedGoogle Scholar
  142. 142.
    E. Ziegler and S. Fomon, Estrategias para la prevención de la deficiencia de hierro: hierro en fórmulas y alimentos infantiles, Deficiencia de Hierro, CESNI. Buenos Aires, pp. 201–211 (1997).Google Scholar
  143. 143.
    V. Dunkel, R. San, H. Seifried, et al., Genotoxicity of iron compounds in Salmonella typhimurium and L5178Y mouse lymphoma cells, Environ. Mol. Mutagen. 33, 28–41 (1999).PubMedGoogle Scholar
  144. 144.
    A. Lehninger, D. Nelson, and M. Cox, Principles of Biochemistry, Worth, New York (1995).Google Scholar
  145. 145.
    E. Hertrampf, M. Olivares, F. Pizarro, et al., Haemoglobin fortified cereal: a source of available iron to breast-fed infants, Eur. J. Clin. Nutr. 44, 793–798 (1990).PubMedGoogle Scholar
  146. 146.
    C. Martinez, T. Fox, J. Eagles, et al., Evaluation of iron bioavailability in infant weaning foods fortified with haem concentrate, J. Pediatr. Gastroenterol. Nutr. 27, 419–424 (1998).PubMedGoogle Scholar
  147. 147.
    A. MacPhail, T. Bothwell, J. Torrance, et al., Factors affecting the absorption of iron from Fe(III)EDTA, Br. J. Nutr. 45, 215–227 (1981).PubMedGoogle Scholar
  148. 148.
    M. Layrisse and C. Martinez-Torres, EDTA-Fe(III) complex as iron fortification, Am. J. Clin. Nutr. 30, 1166–1174 (1977).PubMedGoogle Scholar
  149. 149.
    F. Viteri, R. Garcia Ibañez, and B. Torun, Sodium iron NaFeEDTA as an iron fortification compound in Central America. Absorption studies, Am. J. Clin. Nutr. 31, 961–971 (1978).PubMedGoogle Scholar
  150. 150.
    C. Martinez-Torres, E. Romano, M. Renzi, et al., EDTA-Fe(III) complex as iron fortification. Further studies, Am. J. Clin. Nutr. 32, 809–816 (1979).PubMedGoogle Scholar
  151. 151.
    A. MacPhail and T. Bothwell, Fortification of the diet as a strategy for preventing iron deficiency, Acta Paediatr. Scand. 361(Suppl.), 114–124 (1989).Google Scholar
  152. 152.
    M. El Guindi, S. Lynch, and J. Cook, Iron absorption from fortified flat breads, Br. J. Nutr. 59, 205–213 (1988).PubMedGoogle Scholar
  153. 153.
    R. Hurrell, NaFe3+EDTA as a food fortificant: influence on zinc, calcium and copper metabolism in the rat, Br. J. Nutr. 71, 85–93 (1994).PubMedGoogle Scholar
  154. 154.
    P. Whittaker, J. Vanderveen, M. Dinovi, et al., Toxicological profile, current use, and regulatory issues on EDTA compounds for assessing use of sodium iron EDTA for food fortification, Regul. Toxicol. Pharmacol. 18, 419–427 (1993).PubMedGoogle Scholar
  155. 155.
    J. Heimbach, S. Rieth, F. Mohamedshah, et al., Safety assessment of iron EDTA [sodium iron (Fe3+) ethylenediaminetetraacetic acid]: summary of toxicological, fortification and exposure data, Food Chem. Toxicol. 38, 99–111 (2000).PubMedGoogle Scholar
  156. 156.
    T. Fox, J. Eagles, and S. Fairweather-Tait, Bioavailability of iron glycine as a fortificant in infant foods, Am. J. Clin. Nutr. 67, 664–668 (1998).PubMedGoogle Scholar
  157. 157.
    H. Ashmead, Bioavailability of iron. Glycine, Am. J. Clin. Nutr. 69, 737–738 (1999).PubMedGoogle Scholar
  158. 158.
    F. Pizarro, M. Olivares, E. Hertramfpf, et al., Iron bis-glycine chelate competes for the nonheme-iron absorption pathway, Am. J. Clin. Nutr. 76, 577–581 (2002).PubMedGoogle Scholar
  159. 159.
    M. Olivares, F. Pizarro, O. Pineda, et al., Milk inhibits and ascorbic acid favors ferrous bis-glycine chelate bioavailability in humans, J. Nutr. 127, 1407–1411 (1997).PubMedGoogle Scholar
  160. 160.
    M. Layrisse, M. Garcia-Casal, L. Solano, et al., Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols, J. Nutr. 130, 2195–2199 (2000).PubMedGoogle Scholar
  161. 161.
    C. Iost, J. Name, R. Jeppsen, et al., Repleting hemoglobin in iron deficiency anemia in young children through liquid milk fortification with bioavailable iron amino acid chelate, J. Am. Coll. Nutr. 17, 187–194 (1998).PubMedGoogle Scholar
  162. 162.
    A. Egeli and T. Framstad, Evaluation of the efficacy of perorally administered glutamic acid-chelated iron and iron-dextran injected subcutaneously in Duroc and Norwegian Landrace piglets, Zentralbl. Veterinarmed. A 45, 53–61 (1998).PubMedGoogle Scholar
  163. 163.
    A. Egeli, T. Framstad, and D. Gonningen, The effect of peroral administration of amino acid-chelated iron to pregnant sows in preventing sow and piglet anaemia, Acta Vet. Scand. 39, 77–87 (1998).PubMedGoogle Scholar
  164. 164.
    J. Ostro, Liposomas, Invest. Cie. 126, 74–83 (1987).Google Scholar
  165. 165.
    D. Lasic, Los liposomas, Mundo Cie. 95, 974–983 (1989).Google Scholar
  166. 166.
    X. Micholet, F. Jülicher, B. Fourcade, et al., La fisica de los liposomas, Mundo Cie. 152, 1032–1038 (1995).Google Scholar
  167. 167.
    J. Boccio, M. Zubillaga, R. Caro, et al., New procedure to fortify fluid milk and derivatives with iron: a comparative study in mice, J. Nutr. Sci. Vitaminol. 41, 619–626 (1995).PubMedGoogle Scholar
  168. 168.
    J. Boccio, M. Zubillaga, R. Caro, et al., Bioavailability and stability of microencapsulated ferrous sulfate in fluid milk: studies in mice, J. Nutr. Sci. Vitaminol. 41, 619–626 (1996).Google Scholar
  169. 169.
    J. Boccio, M. Zubillaga, R. Caro, et al., Microencapsulated ferrous sulfate to fortify cow milk: absorption and distribution in mice, J. Nutr. Sci. Vitaminol. 44, 381–389 (1998).PubMedGoogle Scholar
  170. 170.
    J. Boccio, M. Zubillaga, R. Caro, et al., Bioavailability, absorption mechanism, and toxicity of microencapsulated iron(II) sulfate. Studies in mice, Biol. Trace Element Res. 62, 65–73 (1998).Google Scholar
  171. 171.
    A. Lysionek, M. Zubillaga, J. Salgueiro, et al., Study of industrial microencapsulated ferrous sulfate by means of the prophylactic-preventive method to determine its bioavailability, J. Nutr. Sci. Vitaminol. 46, 125–129 (2000).PubMedGoogle Scholar
  172. 172.
    A. Lysionek, M. Zubillaga, J. Salgueiro, et al., Bioavailability study of dried microencapsulated ferrous sulfate SFE-171 by means of the prophylactic-preventive method to determine its bioavailability, J. Trace Elements Med. Biol. 15, 255–259 (2001).Google Scholar
  173. 173.
    A. Lysionek, M. Zubillaga, J. Salgueiro, et al., Petit-Suisse cheese as vehicle for iron fortification. Bioavailability study of two microencapsulated iron sources, J. Nutr. Sci. Vitaminol. 48, 315–317 (2002).PubMedGoogle Scholar
  174. 174.
    A. Lysionek, M. Zubillaga, J. Salgueiro, et al., Bioavailability of microencapsulated ferrous sulfate in powdered milk produced from fortified fluid milk: a prophylactic study in rats, Nutrition 18, 279–281 (2002).PubMedGoogle Scholar
  175. 175.
    M. Rapetti, H. Donato, A. de Galvani, et al., Correction of iron deficiency with an ironfortified fluid whole cow’s milk in children. Results of a pilot study, J. Pediatr. Hematol. Oncol. 19, 192–196 (1997).PubMedGoogle Scholar
  176. 176.
    R. Uicich, F. Pizarro, C. Almeida, et al., Bioavailability of microencapsulated ferrous sulfate in fluid cow’s milk. Studies in human beings, Nutr. Res. 19, 893–897 (1999).Google Scholar
  177. 177.
    M. Zubillaga, R. Caro, J. Boccio, et al., New procedure to fortify fluid milk with iron: metabolic and biochemical study in rats, Nutr. Res. 16, 131–137 (1995).Google Scholar
  178. 178.
    A. Lysionek, M. Zubillaga, J. Salgueiro, et al., Bioavailability studies of a new iron source by means of the prophylactic-preventive method in rats, Biol Trace Element Res. 84, 123–128 (2001).Google Scholar
  179. 179.
    A. Lysionek, M. Zubillaga, M. J. Salgueiro, et al., Stabilized ferrous gluconate as iron source for food fortification: Bioavailability and toxicity studies in rats, Biol Trace Element Res., 94, 73–77 (2003).Google Scholar
  180. 180.
    G. V. Iyengar, Nuclear and istopic techniques for addressing nutritional problems with special reference to current applications in developing countries. Food and Nutrition Bulletin 23, 3–10 (2002).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • José R. Boccio
    • 1
  • Venkatesh Iyengar
    • 2
  1. 1.Radioisotope Laboratory, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Nutritional & Health-Related Environmental Studies SectionInternational Atomic Energy Agency, United NationsViennaAustria

Personalised recommendations