Biological Trace Element Research

, Volume 93, Issue 1–3, pp 63–74 | Cite as

Calcium, Phosphorus, calcium-phosphorus ratio in rib bone of healthy humans

  • Margaret Tzaphlidou
  • Vladimir Zaichick
Article

Abstract

Calcium and phosphorus concentrations as well as the Ca/P ratio were estimated in intact rib bone samples from healthy humans, 37 women and 45 men, aged 15–55 yr. For Ca and P concentration measurements, instrumental neutron activation analysis was used. The mean values (mean±SD) for the investigated parameters were 19.3±4.5% of dry bone weight, 8.42±2.14% of dry bone weight, and a ratio of 2.33±0.34, respectively. Statistically significant differences for the above parameters were not observed to be related either to age or sex. The mean values for Ca, P, and the Ca/P ratio were within a very wide range of published data and close to their medians. The individual variation for the Ca/P ratio in rib bone from healthy humans was lower than those for Ca and P taken separately. An indication is that the specificity of the Ca/P ratio improves upon that for Ca and P concentrations and may be more reliable in the diagnosis of bone disorders.

Index Entries

Calcium phosphorus Ca/P ratio human rib bone neutron activation analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Lewinnek, J. Kelsey, A. A. White, et al., The significance and a comparative analysis of the epidemiology of hip fractures, Clin. Orthop. 152, 35–43 (1980).PubMedGoogle Scholar
  2. 2.
    H. H. Bolotin and H. Sievanen, Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility, J. Bone Miner. Res. 16, 799–805 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Fountos, E. Kounadi, M. Tzaphlidou, et al., The effect of inflammation-mediated osteoporosis (IMO) on the skeletal Ca/P ratio and on the structure of rabbit bone and skin collagen, Appl. Radiat. Isot. 49, 657–679 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Fountos, E. Kounadi, M. Tzaphlidou, et al., In vivo measurement of radius calcium/phosphorus ratio by X-ray absorptiometry, Appl. Radiat. Isot. 51, 273–278 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Fountos, S., Yasumura, and D. Glaros, The skeletal calcium/phosphorus ratio; a new in vivo method of determination, Med. Phys. 24, 1303–1310 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    E. D. Pellegrino and R. M. Biltz, The composition of human bone in uremia, Medicine 44, 397–418 (1965).PubMedCrossRefGoogle Scholar
  7. 7.
    V. Zaichick, Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health, in Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques, IAEA, Vienna, pp. 123–133 (1997).Google Scholar
  8. 8.
    V. Zaichick and S. Zaichick, INAA application for the assessment of chemical element losses under dry ashing of biological materials, in International Conference on Nuclear Analytical Methods in the Life Sciences, pp. 95–97 (1998).Google Scholar
  9. 9.
    L. M. Mosulishvili, M. A. Kolomi’tsev, V. Yu. Dundua, et al., Multielement standards for instrumental neutron activation analysis of biological materials, J. Radioanal. Chem. 26, 175–188 (1975).CrossRefGoogle Scholar
  10. 10.
    R. Parr, Inter-comparison of minor and trace elements, in IAEA Animal Bone (H-5), Progress Report No. 1, IAEA, Vienna (1982).Google Scholar
  11. 11.
    V. M. Kalashnikov, V. Ye. Zaichick, and V. V. Proshin, Neutron activation analysis of bone minerals, Med. Radiol. 7, 82–86 (1975).Google Scholar
  12. 12.
    A. M. Korelo and V. Ye. Zaichick, Software to optimize the multielement INAA of medical and environmental samples, in Activation Analysis in Environment Protection, Joint Institute of Nuclear Research, Dubna, Russia pp. 326–332 (1993).Google Scholar
  13. 13.
    H. G. Woodard, The elementary composition of human cortical bone, Health Phys. 8, 513–517 (1962).PubMedCrossRefGoogle Scholar
  14. 14.
    H. S. Vuorinen, S. Pihlman, H. Mussalo-Rauhamaa, et al., Trace and heavy metal analyses of a skeletal population representing the town people in Turku (ABO), Finland in the 16th–17th centuries: with special reference to gender, age and social background, Sci. Total Environ. 177, 145–160 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    J. D. Robertson and D. L. Samudralwar, Ion beam analysis of the bone tissue of Alzheimer’s disease patients, Nucl. Instr. Methods Phys. Res. B64, 553–557 (1992).CrossRefGoogle Scholar
  16. 16.
    D. L. Samudralwar and J. D. Robertson, Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis, J. Radioanal. Nucl. Chem. Articles 169, 259–267 (1993).CrossRefGoogle Scholar
  17. 17.
    Z. Jaworowski, F. Barbalat, C. Blain, et al., Historical changes of trace metals in human bones from France, in Metals in Bone, N. D. Priest, ed., MTP Press, Lancaster, PA, pp. 383–393 (1985).Google Scholar
  18. 18.
    I. H. Tipton, J. C. Johns, and M. Boyd, The variation with age of elemental concentrations in human tissue, in Proceedings First International Congress of Radiation Protection, Pergamon, Elmsford, NY, p. 759 (1968).Google Scholar
  19. 19.
    M. Anke, O. Latunde-Dada, W. Arnhold, et al., The influence of age, sex and cadmium exposure on the ash, calcium, phosphorus, trace element and ultra trace element content in skeleton, kidneys and liver of humans, in Advances in the Prevention of Environmental Cadmium Pollution and Countermeasures, Eiko Laboratory, Kanazawa (1999) Germany.Google Scholar
  20. 20.
    H. J. Schneider and M. Anke, Die Abhangigkeiten des Kalzium-, Phosphor-und Mangangehaltes verschiedener Organe des Menschen. Arch. Expr. Vet. Med. 25, 787–792 (1971).Google Scholar
  21. 21.
    J. Yoshinaga, T. Suzuki, and M. Morita, Sex- and age-related variation in elemental concentrations of contemporary Japanese ribs, Sci. Total Environ. 79, 209–221 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Yoshinaga, T. Suzuki, M. Morita, et al., Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases, Sci. Total Environ. 162, 239–252 (1995).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Gassman, Chemische Untersuchungen von gesungen und rhachitishen Knochen, Hoppe-Seyler’s Z. Physiol. Chem. 70, 161–170 (1910).Google Scholar
  24. 24.
    I. S. Edelman, A. H. James, H. Baden, et al., Electrolyte composition of bone and the penetration of radiosodium and deuterium oxide into dog and human bone, J. Clin. Invest. 33, 122–131 (1954).PubMedGoogle Scholar
  25. 25.
    R. M. Forbes, A. R. Cooper, and H. H. Mitchell, The composition of the adult human body as determined by chemical analysis, J. Biol. Chem. 203, 359–366 (1953).PubMedGoogle Scholar
  26. 26.
    H. J. Koch and E. R. Smith, The determination of copper and zinc in normal and pathologic human thyroid tissue, J. Clin. Endocrinol. Metab. 16, 123–129 (1956).PubMedCrossRefGoogle Scholar
  27. 27.
    J. W. Agna, H. C. Knowles, and G. Alverson, The mineral content of normal human bone, J. Clin. Invest. 37, 1357–1361 (1958).PubMedGoogle Scholar
  28. 28.
    F. D. Moore, J. Lister, C. M. Boyden, et al., The skeleton as a feature of body composition, Hum. Biol. 40, 135–188 (1968).PubMedGoogle Scholar
  29. 29.
    M. D. Crawford and T. Crawford, Lead content of bones in a soft and hard water area, Lancet 7597, 699–701 (1969).CrossRefGoogle Scholar
  30. 30.
    A. Forssen, Inorganic elements in the human body. Ann. Med. Exp. Biol. Fenniae 50, 99–162 (1972).Google Scholar
  31. 31.
    H. A. Schroeder, I. H. Tipton, and A. P. Nason, Trace metals in man: strontium and barium. J. Chron. Dis. 25, 491–517 (1972).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Bratter, D. Gawlik, J. Lausch, et al., On the distribution of the trace elements in human skeletons, J. Radioanal. Chem. 37, 393–403 (1977).CrossRefGoogle Scholar
  33. 33.
    O. G. Gasenko, A. A. Prohonchukov, B. B. Panikarovsky, et al., Condition of microscopic and crystal structures, microhardness, and minerals of human bone after long space flight, Kosmicheskaya Biol. Aviakosmicheskaya Med. 11, 11–20 (1977).Google Scholar
  34. 34.
    Y. Suzuki, The normal levels of fluorine in the bone tissue of Japanese subjects, Tohoku J. Exp. Med. 129, 327–336 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    G. Tanaka, H. Kawamura, and E. Nomura, Distribution of strontium in the skeleton and in the mass of mineralized bone, Health Phys. 40, 601–614 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    M. M. Erickson, A. Poklis, G. E. Gantner, et al., Tissue mineral levels in victims infant death syndrome II. Essential minerals: copper, zinc, calcium, and magnesium, Pediatr. Res. 17, 784–787 (1983).PubMedGoogle Scholar
  37. 37.
    K. J. Quelch, R. A. Melick, P. J. Bingham, et al., Chemical composition of human bone, Arch. Oral Biol. 28, 665–674 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    J. H. Kyle, Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth—the implications for palaeodietary research, J. Archaeol. Sci. 13, 403–416 (1986).CrossRefGoogle Scholar
  39. 39.
    A. Hisanaga, M. Hirata, A. Tanaka, et al., Variation of trace metals in ancient and contemporary Japanese bones, Biol. Trace Element Res. 22, 221–231 (1989).CrossRefGoogle Scholar
  40. 40.
    M. Saiki, M. K. Takata, S. Kramarski, et al., Instrumental neutron activation analysis of rib bone samples and of bone reference materials, Biol. Trace Element Res. 71–72, 41–46 (1999).Google Scholar
  41. 41.
    S. L. Tompsett, The lead content of human tissue and excreta, Biochem. J. 29, 1851–1853 (1935).PubMedGoogle Scholar
  42. 42.
    S. L. Tompsett, The distribution of lead in human bones, Biochem. J. 30, 345–349 (1936).PubMedGoogle Scholar
  43. 43.
    D. A. Henderson and J. A. Inglis, The lead content of bone in chronic Bright’s diseases, Aust. Ann. Med. 6, 145–151 (1957).PubMedGoogle Scholar
  44. 44.
    N. Yamagata, The concentration of common cesium and rubidium in human body, J. Radiat. Res. 3, 9–30 (1962).PubMedGoogle Scholar
  45. 45.
    R. E. Nusbaum, E. M. Butt, T. C. Gilmour, et al., Relation of air pollution to trace metals in bone, Arch. Environ. Health 10, 227–232 (1965).PubMedGoogle Scholar
  46. 46.
    C. D. Strechlow and T. J. Kneip, The distribution of lead and zinc in the human skeleton, Am. Ind. Hyg. Assoc. J. 30, 372–378 (1969).Google Scholar
  47. 47.
    T., Nozaki, M. Schikawa, T. Sasuga, et al., Neutron activation analysis of uranium in human bone, drinking water and daily diet, J. Radioanal. Chem. 6, 33–40 (1970).CrossRefGoogle Scholar
  48. 48.
    S. B. Gross, E. A. Pfitzer, D. W. Yeager, et al., Lead in human tissues, Toxicol. Appl. Pharmacol. 32, 638–651 (1975).PubMedCrossRefGoogle Scholar
  49. 49.
    L. Ulrich, The investigation of lead levels in vertebra and rib samples, Arch. Toxicol. 41, 133–148 (1978).PubMedCrossRefGoogle Scholar
  50. 50.
    L. E. Wittmers, J. Wallgren, A. Alich, et al., Lead in bone IV. Distribution of lead in human skeleton, Arch. Environ. Health 43, 381–391 (1988).PubMedCrossRefGoogle Scholar
  51. 51.
    B. E. Saltzman, S. B. Gross, D. W. Yeager, et al. Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers, Environ. Res. 52, 126–145 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Margaret Tzaphlidou
    • 1
  • Vladimir Zaichick
    • 2
  1. 1.Laboratory of Medical Physics, Medical SchoolIoannina UniversityIoanninaGreece
  2. 2.Radiological Research CentreKaluga RegionRussia

Personalised recommendations