Advertisement

Biological Trace Element Research

, Volume 93, Issue 1–3, pp 127–139 | Cite as

Effects of protein deficiency on liver trace elements and antioxidant activity in carbon tetrachloride-induced liver cirrhosis

  • E. González-Reimers
  • A. López-Lirola
  • R. Martín Olivera
  • F. Santolaria-Fernández
  • L. Galindo-Martín
  • P. Abreu-González
  • J. J. Sánchez-Sanchez
  • A. Martínez-Riera
Article

Abstract

In liver cirrhosis, liver tissue becomes progressively substituted by fibrosis, ultimately leading to architectural distortion, liver circulatory changes, and liver failure. Some data support the hypothesis that protein undernutrition may play a role in the development and progression of nonalcoholic liver cirrhosis and that this progression is at least partially mediated by changes in glutathione peroxidase (GPX), superoxide dismutase (SOD), and other antioxidative systems, leading to an increase in lipid peroxidation. We analyzed the effects of protein deficiency on liver Cu, Fe, Zn, Mn, and Se in carbon tetrachloride (CCl4)-induced liver cirrhosis, the relation of protein undernutrition and these trace elements with the activity of some hepatic antioxidative enzymatic mechanisms, and the relation of all of them with morphological and biochemical changes in 40 male adult Sprague-Dawley rats divided in four groups. Liver cirrhosis was induced by intraperitoneal injection of CCl4 to 10 rats fed a 2% protein diet and another 10 fed a 18% protein control diet; two further groups included rats without cirrhosis fed the 2% protein and the 18% protein diets. The study period lasted 6 wk. GPX, SOD, and lipid peroxidation products as well as Zn, Cu, Mn, Se, and Fe were determined in liver samples. We found that liver GPX and Se were reduced in the cirrhotic animals, especially in the low-protein-fed ones, protein deficiency, but not cirrhosis, exerting the main effects. A close correlation was found between liver GPX and serum albumin and weight loss and an inverse one among GPX and hepatocyte ballooning, liver fibrosis, and fat, histomorphometrically determined. These results suggest a pathogenetic role of decreased GPX in the progression of liver disease, which may become enhanced by concomitant protein undernutrition. In addition to iron, the levels of which were increased in the malnourished rats, no differences were found regarding the other trace elements, SOD activity, and lipid peroxidation products.

Index Entries

Cirrhosis selenium copper zinc manganese iron protein deficiency malnutrition glutathione peroxidase lipid peroxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Lieber, Alcohol, protein metabolism, and liver injury, Gastroenterology 79, 373–390 (1980).PubMedGoogle Scholar
  2. 2.
    C. S. Lieber, Alcohol and fibrogenesis, Alcohol Alcohol. 1991(Suppl. 1), 339–344 (1991).Google Scholar
  3. 3.
    C. S. Lieber, Ethanol metabolism, cirrhosis and alcoholism, Clin. Chim. Acta 257, 59–84 (1997).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Sternlieb, Copper and the liver, Gastroenterology 78, 1615–1628 (1980).PubMedGoogle Scholar
  5. 5.
    S. Rana, C. P. Sodhi, K. Vaiphei, et al., Protein-energy malnutrition and oxidative injury in growing rats, Hum. Exp. Toxicol. 15, 810–814 (1996).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Lenhartz, R. Ndasi, A. Anninos, et al., The clinical manifestation of the kwashiorkor syndrome is related to increased lipid peroxidation, J. Pediatr. 132, 879–881 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    M. M. Tatli, H. Vural, A. Koc, et al., Altered anti-oxidant status and increased lipid peroxidation in marasmic children, Pediatr. Int. 42, 289–292 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    I. Grattagiano, G. Vendemiale, P. Caraceni, et al., Starvation impairs antioxidant defense in fatty livers of rats fed a choline-deficient diet, J. Nutr. 130, 2131–2136 (2000).Google Scholar
  9. 9.
    J. Beltowski, G. Wojcicka, D. Gorny, et al., The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity, J. Physiol. Pharmacol. 51, 883–896 (2000).PubMedGoogle Scholar
  10. 10.
    A. Bosma, W. F. Seifert, C. G. Van Thiel de Ruiter, et al., Alcohol in combination with malnutrition causes increased liver fibrosis in rats, J. Hepatol. 21, 394–402 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Conde-Martel, E. González-Reimers, F. Santolaria-Fernández, et al., Combined effects of ethanol and protein deficiency on hepatic iron, zinc, manganese, and copper contents, Alcohol 9, 341–348 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Gasso, M. Rubio, G. Varela, et al., Effects of S adenosylmethionine on lipid peroxidation and liver fibrogenesis in carbon tetrachloride-induced cirrhosis, J. Hepatol. 25, 200–205 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    B. M. Dworkin, W. S. Rosenthal, R. E. Stahl, et al., Decreased hepatic selenium content in alcoholic cirrhosis, Dig. Dis. Sci. 33, 1213–1217 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    U. Johansson, F. Johansson, B. Joelsson, et al., Selenium status in patients with liver cirrhosis and alcoholism, Br. J. Nutr. 55, 227–233 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Rojind and M. A. Dunn, Hepatic fibrosis, Gastroenetrology 76, 846–863 (1979).Google Scholar
  16. 16.
    R. W. Chapman, M. Y. Morgan, M. Laulicht, et al., Hepatic iron stores and markers of iron overload in alcoholics and patients with idiopathic haemochromatosis, Dig. Dis. Sci. 27, 909–916 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Brissot, J. P. Campion, A. Guillouzo, et al., Experimental hepatic iron overload in the baboon: results of a two-year study. Evolution of biological and morphological hepatic parameters of iron overload, Dig. Dis. Sci. 28, 616–624 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Brissot, J. Farjanel, D. Bourel, et al., Chronic liver iron overload in the baboon by ferric nitrilotriacetate: morphologic and functional changes with special reference to collagen synthesis enzymes, Dig. Dis. Sci. 32, 620–627 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    B. R. Bacon, A. S. Tyavill, G. M. Brittenham, et al., Hepatic lipid peroxidation in vivo in rats with chronic iron overload, J. Clin. Invest. 71, 429–439 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Minotti and S. D. Aust SD, The requirement for iron III in the initiation of lipid peroxidation by iron II and hydrogen peroxide, J. Biol. Chem. 262, 1098–1104 (1987).PubMedGoogle Scholar
  21. 21.
    A. A. Jackson, Severe undernutrition in Jamaica, Acta Paediatr. Scand. 323, 43–51 (1986).Google Scholar
  22. 22.
    E. González-Reimers, A. Martínez Riera, F. Santolaria-Fernández, et al., Relative and combined effects of ethanol and protein deficiency on zinc, iron, copper, and manganese contents in different organs and urinary and fecal excretion, Alcohol 16, 7–12 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    C. S. Lieber, L. M. De Carli, and M. Sorrell, Experimental methods of ethanol administration, Hepatology 10, 501–510 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    E. J. Underwood, Trace Elements in Human and Animal Nutrition, Academic, New York (1977).Google Scholar
  25. 25.
    H. Shimizu, K. Uetsuka, H. Nakayama, et al., Carbon tetrachloride-induced acute liver injury in Mini and Wistar rats, Exp. Toxicol. Pathol. 53, 11–17 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    E. González-Reimers, A. Castañeyra-Perdomo, F. Santolaria-Fernández, et al., Effect of ethanol on liver cell development in the male albino mouse, Drug Alcohol Depend. 19, 35–44 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    H. E. Ganther, D. G. Hafeman, R. A. Lawrence, et al., Selenium and glutathione peroxidase in health and disease, in Trace Elements in Health and Disease, A. S. Prasad and D. Oberleas, Academic, New York, pp. 165–234 (1976).Google Scholar
  28. 28.
    J. Aaseth, J. Alexander, Y. Thomassen, et al., Serum selenium levels in liver diseases, Clin. Biochem. 15, 281–283 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    R. F. Burk, D. S. Early, K. E. Hill, et al., Plasma selenium in patients with cirrhosis, Hepatology 27, 794–798 (1998).PubMedCrossRefGoogle Scholar
  30. 30.
    M. J. Valimaki, K. J. Harju, and R. H. Ylikahri, Decreased serum selenium in alcoholic—a consequence of liver dysfunction, Clin. Chim. Acta 130, 291–296 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Aaseth, A. Smith-Kielland, and Y. Thomassen, Selenium, alcohol and liver diseases, Ann. Clin. Res. 18, 43–47 (1986).PubMedGoogle Scholar
  32. 32.
    H. Korpela, J. Kumpulainen, P. V. Luoma, et al., Decreased serum selenium in alcoholics are related to liver structure and function, Am. J. Clin. Nutr. 42, 147–151 (1985).PubMedGoogle Scholar
  33. 33.
    P. J. Tuluvath and D. R. Triger, Selenium in chronic liver disease, J. Hepatol. 14, 176–182 (1992).CrossRefGoogle Scholar
  34. 34.
    M. Casaril, A. M. Stanzial, G. B. Gabrielli, et al., Serum selenium in liver cirrhosis: correlation with markers of fibrosis, Clin. Chim. Acta 182, 221–227 (1989).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Van Gossum and J. Neve, Low selenium status in alcoholic cirrhosis is correlated with aminopyrine breath test. Preliminary effects of selenium supplementation, Biol. Trace Element Res. 47, 201–207 (1995).Google Scholar
  36. 36.
    C. Loguercio, V. De Girolamo, A. Federico, et al., Trace elements and chronic liver disease, Trace Elements Med. Biol. 11, 158–161 (1997).Google Scholar
  37. 37.
    H. S. Lee and A. S. Csallany, The influence of vitamin E and selenium on lipid peroxidation and aldehyde dehydrogenase activity in rat liver and tissue, Lipids 29, 345–350 (1994).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Camps, T. Bargallo, A. Giménez, et al., Relationship between hepatic lipid peroxidation and fibrogenesis in carbon-tetrachloride-treated rats: effect of zinc administration, Clin. Sci. (Lond.) 83, 695–700 (1992).Google Scholar
  39. 39.
    H. Anttinnen, L. Ryhänen, U. Puistola, et al., Decrease in liver collagen accumulation in carbon tetrachloride injured and normal growing rats upon administration of zinc, Gastroenterology 86, 532–539 (1984).Google Scholar
  40. 40.
    E. Gaudio, L. Pannarale, A. Franchitto, et al., Zinc supplementation in experimental liver cirrhosis: a morphological, structural and ultrastructural study, Int. J. Exp. Pathol. 74, 463–469 (1993).PubMedGoogle Scholar
  41. 41.
    M. Cabré, J. Camps, J. L. Paternain, et al., Time-course of changes in hepatic lipid peroxidation and glutathione metabolism in rats with carbon-tetrachloride-induced cirrhosis, Clin. Exp. Pharmacol. Physiol. 27, 694–699 (2000).PubMedCrossRefGoogle Scholar
  42. 42.
    M. Cabré, N. Ferré, J. Folch, et al., Inhibition of hepatic cell nuclear DNA fragmentation by zinc in carbon tetrachloride-treated rats, Hepatology 31, 228–234 (1999).CrossRefGoogle Scholar
  43. 43.
    J. M. Hsu, Biochemistry and metabolims of Zinc, in Zinc and Copper in Medicine, Z. A. Karcioglu and R. M. Sarper, eds., Charles C Thomas, Springfield, IL, pp. 66–93 (1980).Google Scholar
  44. 44.
    A. Conde-Martel, E. González-Reimers, F. Santolaria-Fernández, et al., Cambios hepáticos en la malnutrición proteica: estudio experimental en ratas, Nutr Hosp 8, 358–363 (1993).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • E. González-Reimers
    • 1
  • A. López-Lirola
    • 1
  • R. Martín Olivera
    • 1
  • F. Santolaria-Fernández
    • 1
  • L. Galindo-Martín
    • 2
  • P. Abreu-González
    • 3
  • J. J. Sánchez-Sanchez
    • 3
  • A. Martínez-Riera
    • 1
  1. 1.Departamento de Medicina InternaHospital UniversitarioTenerifeCanary Islands
  2. 2.Departamento de Química AnalíticaUniversidad de La LagunaTenerifeCanary Islands
  3. 3.Departamento de FisiologíaUniversidad de La LagunaTenerifeCanary Islands

Personalised recommendations