Skip to main content
Log in

Selenium contentrations in human renal cortex, liver, and hair in Northern Poland

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to (1) determine the selenium concentration in the renal cortex, liver, and hair in 64 residents from northern Poland (Gdańsk region) aged 17–81 yr, who died suddenly, and (2) assess whether a correlation between the selenium concentration in hair and in the renal cortex and liver occurs. Selenium was determined by atomic absorption spectrometry using the hydride generation method. The mean selenium concentration in the renal cortex, liver, and hair in the investigated persons was 0.791±0.191 µg/g (wet weight), 0.289±0.084 µg/g (wet weight), and 0.443±0.128 µg/g, respectively. No age-dependent differences in selenium level in the investigated tissues was found. Also, no correlation between the selenium concentrations in hair and in renal cortex and liver was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Combs and W. P. Gray, Chemopreventive agents: selenium, Pharmacol. Ther. 79, 179–192 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. D. H. Holben and A. M. Smith, The diverse role of selenium within selenoproteins: a review, J. Am. Diet. Assoc. 99, 836–843 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. M. P. Rayman, The importance of selenium to human health, Lancet 356, 233–241 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. G. N. Schrauzer, Anticarcinogenic effect of selenium, Cell. Mol. Life Sci. 57, 1864–1873 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. B. Zachara, H. Pawluk, E. Bloch-Bogusłwska, et al., Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland, Arch. Environ. Health 56, 461–466 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. L. Magos and G. G. Berg, Selenium, in Biological Monitoring of Toxic Metals, T. W. Clarkson, L. Friberg, G. N. Nordberg, et al., eds., Plenum, New York (1988).

    Google Scholar 

  7. C. D. Thomson, Selenium speciation in human body fluids, Analyst 123, 827–831 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. O. Mestek, M. Suchanek, Z. Vodickova, et al., Comparison of the suitability of various atomic spectroscopic techniques for the determination of selenium in human whole blood, J. Anal. Atomic Spectrom. 12, 85–89 (1997).

    Article  CAS  Google Scholar 

  9. B. Tiran, E. Karpf, and A. Tiran, Age dependency of selenium and cadmium content in human liver, kidney and thyroid, Arch. Environ. Health 50, 242–246 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. E. Hać, J. Krechniak, and M. Szyszko, Selenium levels in human plasma and hair in Northern Poland, Biol. Trace Element Res. 85, 277–285 (2002).

    Article  Google Scholar 

  11. M. Trzcinka-Ochocka, G. Razniewska, and M. Jakubowski, Blood serum selenium levels in children and adults in Poland, Trace Elements Electrolytes 17, 147–153 (2000).

    CAS  Google Scholar 

  12. A. J. Duffield and Ch. D. Thomson, A comparison of methods of assessment of dietary selenium intakes in Otago, New Zealand, Br. J. Nutr. 82, 131–138 (1999).

    PubMed  CAS  Google Scholar 

  13. D. Brune, G. Nordberg, and P. O. Wester, Distribution of 23 elements in the kidney, liver and lungs of workers from a smeltery and refinery in the North Sweden exposed to a number of elements and of a control group, Sci. Total Environ. 16, 13–35 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. H. Zduńska, E. Bloch-Bogusławska, J. Przygońska, et al., Selenium concentration and gluthathione peroxidase activity in the organs of people who died a violent death. Arsenic and selenium in the environment ecological and analytical problems, PAN Zesz. Nauk. 8, 190–193 (1994).

    Google Scholar 

  15. O. Oster, G. Schmiedel, and W. Prellwitz, The organ distribution of selenium in German adults, Biol. Trace Element Res. 15, 23–45 (1988).

    Article  CAS  Google Scholar 

  16. Y. Muramatsu and R. M. Parr, Concentrations of some trace elements in hair, liver and kidney from autopsy subjects—relationship between hair and internal organs, Sci. Total Environ. 76, 29–40 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. Y. D. Cheng, G. S. Zhuang, M. G. Tan, et al., Study of correlation of Se content in human hair and internal organs by INAA, Biol. Trace Element Res. 11, 737–741 (1990).

    Google Scholar 

  18. K. Julshamm, K. J. Andersen, E. Svendsen, et al., Trace elements intake in the Faroe Islands. III. Element concentrations in human organs in populations from Bergen (Norway) and the Faroe Island, Sci. Total Environ. 84, 25–33 (1989).

    Article  Google Scholar 

  19. Y. Yoo, S. Lee, and J. Yang, et al., Distribution of heavy metals in normal Korean tissues, Probl. Forensic Sci., 43, 283–289 (2000).

    CAS  Google Scholar 

  20. Y. Yoshinaga, H. Imai, M. Nakazawa, et al., Lack of significantly positive correlations between elemental concentrations in hair and in organs, Sci. Total Environ. 99, 125–135 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hać, E., Krechniak, J., Szyszko, M. et al. Selenium contentrations in human renal cortex, liver, and hair in Northern Poland. Biol Trace Elem Res 92, 213–219 (2003). https://doi.org/10.1385/BTER:92:3:213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:92:3:213

Index Entries

Navigation