Fish eating and variations in selenium and mercury levels in plasma and erythrocytes in free-living healthy Japanese men

  • Kanae Karita
  • Tsuguyoshi Suzuki
Article

Abstract

The levels and its interindividual and intraindividual variations of selenium (Se) and mercury (Hg) in erythrocytes and plasma were investigated in seven healthy young men during a period of 10 wk, with emphasis on the relationship to the dietary intake of several defined food items. The intraindividual variation, estimated by coefficients of variation (CVs), was 9.9% for plasma Se (PSe), 9.5% for erythrocyte Se (ESe), 42.4% for PHg, and 11.7% for EHg on the average. Significant correlations were found for mean ESe levels in each subject and his fish-eating frequency during this study (r=0.752, p<0.01). Weekly PHg levels were also correlated with average fish-eating frequency in the corresponding week of blood collection (r=0.367, p<0.05). Fish intake within 24 h before blood collection influenced PHg levels significantly.

Index Entries

Mercury selenium plasma erythrocyte variation fish consumption 

References

  1. 1.
    S. K. Gallagher, L. K. Johnson, and D. B. Milne, Short-term and long-term variability of indices related to nutritional status. I: Ca, Cu, Fe, Mg and Zn, Clin. Chem. 35, 369–373 (1989).PubMedGoogle Scholar
  2. 2.
    N. M. Solomons, O. Pineda, and D. B. Milne, Short-term intraindividual variability in plasma trace mineral concentrations, J. Micro-nutr. Anal. 2, 55–65 (1986).Google Scholar
  3. 3.
    A. C. Van Steirteghem, E. A. Robertson, and D. S. Young, Variance components of serum constituents in healthy individuals, Clin. Chem. 24, 212–222 (1978).PubMedGoogle Scholar
  4. 4.
    J. F. Pickup, E. K. Harris, M. Kearns, and S. S. Brown, Intra-individual variation of some serum constituents and its relevance to population-based reference ranges, Clin. Chem. 23, 842–850 (1977).PubMedGoogle Scholar
  5. 5.
    P. Winkel, B. E. Statland and H. Bokelund, The effect of time of venipuncture on variation of serum constituents, Am. J. Clin. Pathol. 64, 433–447 (1975).PubMedGoogle Scholar
  6. 6.
    E. Cotlove, E. K. Harris, and G. Z. Williams, Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. III. Physiological and medical implications, Clin. Chem. 16, 1028–1032 (1970).PubMedGoogle Scholar
  7. 7.
    J. Sherlock, J. Hislop, D. Newton, G. Topping, and K. Whittle, Elevation of mercury in human blood from controlled chronic ingestion of methylmercury in fish, Hum. Toxicol. 3, 117–131 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Suzuki, S. Himeno, T. Hongo, C. Watanabe, and H. Satoh, Mercury-selenium interaction in workers exposed to elemental mercury vapor, J. Appl. Toxicol. 6, 149–153 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    IPCS, Methylmercury, Environmental Health Criteria 101, WHO, Geneva (1990).Google Scholar
  10. 10.
    T. Suzuki, T. Hongo, T. Ohba, K. Kobayashi, H. Imai, H. Ishida, et al., The relation of dietary selenium to erythrocyte and plasma selenium concentrations in Japanese college women, Nutr. Res. 9, 839–848 (1989).CrossRefGoogle Scholar
  11. 11.
    H. Imai, T. Suzuki, H. Kashiwazaki, T. Takemoto, K. Moji, and T. Izumi, Dietary habit and selenium concentrations in erythrocyte and serum in a group of middle-aged elderly Japanese, Nutr. Res. 10, 1205–1214 (1990).CrossRefGoogle Scholar
  12. 12.
    T. Hongo, C. Watanabe, S. Himeno, and T. Suzuki, Relationship between erythrocyte mercury and selenium in erythrocyte, plasma and urine, Nutr. Res. 5, 1285–1289 (1985).CrossRefGoogle Scholar
  13. 13.
    J. H. Watkinson, Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene, Anal. Chem. 38, 92–97 (1966).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Magos, Selective atomic-absorption determination of inorganic mercury and methylmercury in undigested biological samples, Analyst 96, 847–853 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Yamamoto, H. Satoh, T. Suzuki, A. Naganuma, and N. Imura, The applicable condition of Magos’ method for mercury measurement under coexistence of selenium, Anal. Biochem. 101, 254–259 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Shishido and T. Suzuki, Estimation of daily intake inorganic or organic mercury via diet, Tohoku J. Exp. Med. 114, 369–377 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    B. G. Svensson, A. Schutz, A. Nilsson, I. Akesson, and S. Skerfving, Fish as a source of exposure to mercury and selenium, Sci. Total Environ. 126, 61–74 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Rice, J. Swartout, K. Mahaffey, and R. Schoeny, Derivation of U.S. EPA’s oral Reference Dose (RfD) for methylmercury, Drug Chem. Toxicol. 23(1), 41–54 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Gailer, G. N. George, I. J. Pickering, S. Madden, R. C. Prince, E. Y. Yu, et al., Structural basis of the antagonism between inorganic mercury and selenium in mammals, Chem. Res. Toxicol. 13(11), 1135–1142 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Cornelis, B. Heinzow, R. F. Herber, J. M. Christensen, O. M. Poulsen, E. Sabbioni, et al., Sample collection guidelines for trace elements in blood and urine. IUPAC Commission of Toxicology, Trace Elements Med. Biol. 10(2), 103–127 (1996).Google Scholar
  21. 21.
    M. P. Rayman, Dietary selenium: time to act, Br. Med. J. 314, 387–388 (1997).Google Scholar
  22. 22.
    A. MacPherson, M. N. I. Barclay, R. Scott, and R. W. S. Yates, Loss of Canadian wheat imports lowers selenium intake and status of the Scottish population, in P. W. F. Fischer, M. R. L’Abbe, K. A. Cockell, and R. S. Gibson, eds., Trace Elements in Man and Animals, N.R.C. Research Press, Ottawa, pp. 203–205 (1977).Google Scholar
  23. 23.
    M. Janghorbani, M. J. Christensen, A. Nahapetian, and V. R. Young, Selenium metabolism in healthy adults: quantitative aspects using the stable isotope SeO. Am. J. Clin. Nutr. 35, 647–654 (1982).PubMedGoogle Scholar
  24. 24.
    J. Neve, F. Vertongen, and L. Molle, Selenium deficiency, Clin. Endocrinol. Metab. 14, 629–656 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    N. W. Griffiths, R. D. H. Stewart, and M. F. Robinson, The metabolism of Se selenomethionine in four women, Br. J Nutr. 35, 373–382 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Neve, F. Vertongen, and P. Caple, Selenium supplementation in healthy Belgian adults: response in platelet glutathione peroxidase activity and other blood indices, Am. J Clin. Nutr. 48, 139–143 (1988).PubMedGoogle Scholar
  27. 27.
    T. Suzuki, H. Imai, K. Kobayashi, T. Hongo, H. Kashiwazaki, R. Ohstuka, et al., Dietary intake of selenium in Japanese—an estimation analyzed and reported values in foodstuffs and cooked dishes, J. Jpn. Soc. Nutr. Food Sci. 41, 91–102 (1988) (in Japanese).Google Scholar
  28. 28.
    K. Yasumoto, K. Iwami, M. Yoshida, and H. Mitsuda, Selenium content of foods and its average daily intake in Japan, J. Jpn. Soc. Nutr. Food Sci. 29, 511–515 (1976) (in Japanese).Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Kanae Karita
    • 1
  • Tsuguyoshi Suzuki
    • 1
  1. 1.Department of Human Ecology, Faculty of MedicineUniversity of TokyoTokyoJapan

Personalised recommendations