Biological Trace Element Research

, Volume 86, Issue 1, pp 1–10 | Cite as

Aluminum ions induce DNA synthesis but not cell proliferation in human fibroblasts in vitro

  • Carmen Domínguez
  • Antonio Moreno
  • Marc Llovera


The effect in vitro of aluminum (Al) ions on DNA synthesis and human dermal fibroblast proliferation using [Al] concentrations from 1.85 to 74 µM and incubation periods of 1, 2, 3, 4, and 5 d was assessed. The lowest concentration of Al that exerted a slight positive, although not significant, effect on DNA synthesis was 1.85 µM, after d 3 or 5 of incubation. The stimulating action of Al was more evident and statistically significant from concentrations of 3.7 µM and 2 d exposure onward. This Al-induced effect on [3H] thymidine incorporation into DNA increased in a time-dependent manner as [Al] in the culture medium rose, provoking increments of up to 322% above the control at [Al] 74 µM and 5 d incubation. In contrast, Al salts moderately increased fibroblast division in a continuous manner only from 7.4 to 74 µM after 3 d of incubation. Although significant overall, the minimal and inconstant mitogenic activity of Al differs greatly from and is not parallel to DNA synthesis, which is not clearly related to exposure times or Al concentrations. Abnormalities in Al-induced cellular metabolic processes described herein and their influence on the cell cycle may constitute a toxicity mechanism for human tissues, leading to disease development. Further studies are required to determine whether these findings can be extrapolated to in vivo situations.

Index Entries

Aluminum DNA cell proliferation cytotoxicity fibroblasts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Greger, Aluminium metabolism, Annu. Rev. Nutr. 13, 43–63 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    A. C. Alfrey, G. R. LeGendre, and W. D. Kaehny, The dialysis encephalopathy syndrome: possible aluminium intoxication, N. Engl. J. Med. 294, 184–188 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    U. De Boni, A. Otvos, J. W. Scott, and D. R. Crapper, Neurofibrillary degeneration induced by systemic aluminum, Acta Neuropathol. 35, 285–294 (1976).PubMedGoogle Scholar
  4. 4.
    A. Moreno, C. Dominguez, and A. Ballabriga, Aluminium in the neonate related to parenteral nutrition, Acta Paediatr. 83, 25–29 (1994).PubMedGoogle Scholar
  5. 5.
    N. J. Bishop, R. Morley, B. Chir, J. P. Day, and A. Lucas, Aluminium neurotoxicity in preterm infants receiving intravenous-feeding solutions, N. Engl. J. Med. 336, 1557–1561 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    R. A. Yokel, The toxiciology of aluminum in the brain: a review, Neurotoxicology 21, 813–828 (2000).PubMedGoogle Scholar
  7. 7.
    J. P. Landsberg, B. McDonald, and F. Watt, Absence of aluminum in neuritic plaque cores in Alzheimer’s disease, Nature 360, 65–67 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    J. P. Muller and A. Bruinink, Neurotoxic effects of aluminium on embryonic chick brain cultures, Acta Neuropathol. 88, 359–366 (1994).PubMedGoogle Scholar
  9. 9.
    L. L. Iversen, R. J. Mortishire-Smith, S. J. Pollack, and M. S. Shearman, The toxicity in vitro of beta-amyloid protein, Biochem. J. 311, 1–16 (1995).PubMedGoogle Scholar
  10. 10.
    C. Exley, A molecular mechanism of aluminium-induced Alzheimer’s disease? J. Inorg. Biochem. 30, 133–140 (1999).CrossRefGoogle Scholar
  11. 11.
    C. Exley and J. D. Birchall, The cellular toxicity of aluminium, J. Theor. Biol. 159, 83–98 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    W. J. Lukiw, Alzheimer’s disease and aluminum, in Mineral and Metal Neurotoxicology, M. Yasuy, M. Strong, K. Ota, and M. A. Verity, eds., CRC, Boca Raton, FL, pp. 113–126 (1997).Google Scholar
  13. 13.
    M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Shopsis and G. J. Mackay, A semi-automated protein assay for cell cultures, Anal. Biochem. 140, 104–107 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    J. B. Smith, Aluminum ions stimulate DNA synthesis in quiescent cultures of Swiss 3T3 and 3T6, J. Cell. Physiol. 118, 298–304 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    T. R. Jones, D. L. Antonetti, and T. W. Reid, Aluminum ions stimulate mitosis in murine cells in tissue culture, J. Cell. Biochem. 30, 31–39 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    K. L. Audus, S. R. Holthaus, J. M. B. van Bree, and J. A. Shinogle, Aluminum effects on growth of brain microvessel endothelial cells in primary culture, Res. Commun. Chem. Pathol. Pharmacol. 60, 71–85 (1988).PubMedGoogle Scholar
  18. 18.
    K-H. Lau, S. Utrapiromsuk, A. Yoo, S. Mohan, D. D. Strong, and D. J. Baylink, Mechanism of mitogenic action of aluminum ion on human bone cells: potential involvement of the insulin-like growth factor regulatory system, Arch. Biochem. Biophys. 303, 267–273 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    C. A. Miller and E. M. Levine, Effects of aluminum salts on cultured neuroblastoma cells, J. Neurochem. 22, 751–758 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    P. F. Zatta, P. Zambenedetti, and S. Masiero, Effects of aluminium lactate on murine neuroblastoma cells, Neurotoxicology 15, 789–798 (1994).PubMedGoogle Scholar
  21. 21.
    C. K. Atterwill, H. B. Johnston, and S. M. Thomas, Reversal of aluminium-induced metabolic changes in primary rat midbrain neural cultures by the NMDA antagonist MK-801, Toxicol. in Vitro 10, 631–635 (1996).CrossRefPubMedGoogle Scholar
  22. 22.
    L. D. Quarles, R. J. Wenstrup, S. A. Castillo, and M. K. Drezner, Aluminum-induced mitogenesis in MC3T3-E1 osteoblasts: potential mechanism underlying neoosteogenesis, Endocrinology 128, 3144–3151 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Mailland, R. Waelchli, M. Ruat, H. G. Boddeke, and K. Seuwen, Stimulation of cell proliferation by calcium and a calcimimetic compound, Endocrinology 138, 3601–3605 (1997).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Campbell, D. Hamai, and S. C. Bondy, Differential toxicity of aluminum salts in human cell lines of neural origin: implications for neurodegeneration, Neurotoxicology 22, 63–71 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Carmen Domínguez
    • 1
  • Antonio Moreno
    • 1
  • Marc Llovera
    • 1
  1. 1.Biochemistry & Molecular Biology CenterVall d’Hebron HospitalsBarcelonaSpain

Personalised recommendations