Advertisement

Biological Trace Element Research

, Volume 85, Issue 3, pp 227–239 | Cite as

Influence of age, sex, and sexual activity on trace element levels and antioxidant enzyme activities in field mice (Apodemus sylvaticus and Mus spretus)

  • Paula A. Lopes
  • Ana Maria Viegas-Crespo
  • Ana Cláudia Nunes
  • Teresa Pinheiro
  • Carla Marques
  • Maria Cristina Santos
  • Maria da Luz Mathias
Article

Abstract

The influence of age, gender and sexual activity on both hepatic levels of some trace elements (Fe, Cu, Zn, Mn, Se) and the activities of glutathione-S-transferase (GST) and superoxide dismutase (SOD) was investigated in Wood mice (Apodemus sylvaticus) and Algerian mice (Mus spretus). Animals were taken from a riverside community of an unpolluted area of central Portugal. Adult A. sylvaticus presented the highest hepatic mean concentrations of Cu and Mn, whereas adult M. spretus had the highest Fe concentration in the liver. Moreover, an influence of age on the contents of Fe, Zn, and Mn has been observed in A. sylvaticus, whereas in M. spretus an influence of gender and sexual activity was only detected on Zn levels. In contrast, enzyme activities were not influenced by the studied variables, despite a tendency for an increase in SOD activity in sexually active M. spretus. GST activity was species dependent, whereas SOD activity was similar between species. These findings were analyzed regarding the relationship of both essential trace elements and the two antioxidant enzymes with physiological and metabolic pathways related to life cycles in the two species of mice. Results enhanced the understanding of A. sylvaticus and M. spretus as biological models, allowing their future use as bioindicators of environmental toxicity.

Index Entries

Apodemus sylvaticus glutathione-S-transferase Mus spretus pollution superoxide dismutase trace elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Alloway and D. C. Ayres, Chemical Principles of Environmental Pollution, Blackie Academic & Professional, Glasgow (1993).Google Scholar
  2. 2.
    B. P. Yu, Cellular defences against damage from reactive oxygen species, Physiol. Rev. 74(1), 139–162 (1994).PubMedGoogle Scholar
  3. 3.
    J. Burger, I. C. Nisbet, and M. Gochfeld, Heavy metal and selenium levels in feathers of known-aged common terns (Sterna hirundo), Arch. Environ. Contam. Toxicol. 26(3), 351–355 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    E. Hurna, P. Siklenka, and S. Hurna, Effect of selenium on cadmium genotoxicity investigated by micronucleus assay, Vet. Med. (Praha) 42(11), 339–342 (1997).Google Scholar
  5. 5.
    B. L. Reis, C. L. Keen, B. Lonnerdal, and L. S. Hurley, Mineral composition and zinc metabolism in female mice of varying age and reproductive status, J. Nutr. 118(3), 349–361 (1988).PubMedGoogle Scholar
  6. 6.
    C. Mohanna and Y. Nys, Influence of age, sex and cross on body concentrations of trace elements (zinc, iron, copper and manganese) in chickens, Br. Poult. Sci. 39(4), 536–543 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Carpene, R. Serra, M. Manera, and G. Isani, Seasonal changes of zinc, copper, and iron in gilthead sea bream (Sparus aurata) fed fortified diets, Biol. Trace Element Res. 69(2), 121–139 (1999).Google Scholar
  8. 8.
    J. Neve, Eléments essentiels et toxiques en traces et ultra-traces: quelques définitions et principales propriétés, Nouv. Sci. Technol. 8(1), 11–16 (1990).Google Scholar
  9. 9.
    E. E. Ziegler and L. J. Filer, Jr., Present Knowledge in Nutrition, 7th ed., ILSI, Washington DC (1996).Google Scholar
  10. 10.
    D. R. Livingstone, L. Forlin, and S. G. George, Molecular biomarkers and toxic consequences of impact by organic pollution in aquatic organisms, in Water Quality and Stress Indicators in Marine and Freshwater Ecosystems: Linkind levels of Organisation (Individuals, Populations, Communities), W. D. Sutcliffe, ed., Freshwater Biological Association, UK, pp. 154–171 (1994).Google Scholar
  11. 11.
    H. Sies, Strategies of antioxidant defence, Eur. J. Biochem. 215, 213–219 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Kaur and B. Halliwell, Salicilic acid and phenylalanine as probes to dectet hydroxyl radicals, in Free Radicals. A Practical Approach, N. A. Punchard and F. J. Kelly, eds., IRL, Oxford, pp. 101–116 (1996).Google Scholar
  13. 13.
    V. Peltola, I. Huhtaniemi, T. Metsa-Ketela, and M. Ahotupa, Induction of lipid peroxidation during steroidogenesis in the rat testis, Endocrinology 137(1), 105–112 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    A. M. Dhamaradjan, S. Hisheh, B. Singh, S. Parkinson, K. I. Tilly, and J. L. Tilly, Antioxidants mimic the ability of chorionic gonadotropin to suppress apoptosis in the rabbit corpus luteum in vitro: a novel role for superoxide dismutase in regulating bax expression, Endocrinology 140, 2555–2561 (1999).CrossRefGoogle Scholar
  15. 15.
    A. Viarengo, L. Canesi, M. Pertica, and D. R. Livingstone, Seasonal variations in the antioxdant defence systems and lipid peroxidation of the digestive gland of mussels, Comp. Biochem. Physiol. 100C(1/2), 187–190 (1991).Google Scholar
  16. 16.
    N. P. E. Vermeulen, G. J. Mulder, H. Nieuwenhuyse, W. H. M. Peters, and P. J. Van Bladeren, Glutathione S-Transferases, Structure, Function and Clinical Implications, Taylor & Francis, London (1996).Google Scholar
  17. 17.
    T. D. Boyer, The glutathione S-transferases: an update, Hepatology 9, 486–496 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    I. Hatayama, K. Satoh, and K. Sato, Developmental and hormonal regulation of the major form of hepatic glutathione S-transferase in male mice, Biochem. Biophys. Res. Commun. 140, 581–588 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    M. C. Santos, J. Nève, M. L. Pavão, and A. M. Viegas-Crespo, Dietary selenium intake and antioxidant defences in tissues of peripuberal rats, in Trace Elements in Man and Animals, Volume 10, A. M. Roussel, R. A. Anderson, and A. E. Favier, eds., Kluwer Academic plenum, New York, pp. 859–863 (2000).Google Scholar
  20. 20.
    L. Staffas, L. Mankowitz, M. Sodertrom, A. Blanck, I. Porsch-Hallstrom, C. Sundberg, et al., Further characterization of hormonal regulation of glutathione transferase in rat liver and adrenal glands. Sex differences and demonstration that growth hormone regulates the hepatic levels, Biochem. J. 286, 65–72 (1992).PubMedGoogle Scholar
  21. 21.
    N. McLoughlin, D. Yin, L. Maltby, R. M. Wood, and H. Yu, Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers, Environ. Toxicol. Chem. 19, 2085–2091 (2000).CrossRefGoogle Scholar
  22. 22.
    M. L. Mathias, A. M. Viegas-Crespo, E. G. Crespo, M. J. Collares-Pereira, M. M. Coelho, M. A. Reis, et al., Ecotoxicological bioindicator parameters of fish and small mammals from Guadiana river, X Congresso Nacional de Bioquímica, pp. 12–24 (1996).Google Scholar
  23. 23.
    P. A. Lopes, T. Pinheiro, M. C. Santos, M. L. Mathias, M. J. Collares-Pereira, and A. M. Viegas-Crespo, Response of antioxidant enzymes in freshwater fish populations (Leuciscus alburnoides complex) to inorganic pollutants exposure. Sci. Total Environ, 280, 153–163 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Sérgio, R. Figueira, and A. M. Viegas-Crespo, Observations of heavy metal accumulation in the cell walls of Fontinalis antipyretica in a Portuguese stream affected by mine effluent, J. Bryology 22, 251–255 (2000).Google Scholar
  25. 25.
    A. C. Nunes, M. L. Mathias, and A. M. Viegas-Crespo, Morphological and haematological parameters in the Algerian mouse (Mus spretus) inhabiting an area contaminated with heavy metals, Environ. Pollut. 113, 87–93 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Bengtson, A. Nilson, and S. Rundgren, Population structure and dynamics of wood mouse Apodemus sylvaticus in Iceland, Holarctic Ecol. 12, 351–368 (1989).Google Scholar
  27. 27.
    A. Mira and M. L. Mathias, Padrões de reprodução em ratinhos—caseiros (Mus musculus domesticus) e ratinhos—ruivos (Mus spretus). In Protecção da Produção Agrícola, pp. 65–75 (1996).Google Scholar
  28. 28.
    D. Nagorsen and R. Petersen, Mammal Collector’s Manual, Royal Ontario Museum, Ontario (1980).Google Scholar
  29. 29.
    R. E. Van Gricken and A. A. Markowicz, Handbook of X-ray Spectrometry, Practical Spectroscopy Series Vol. 14, Marcel Dekker, New York (1993).Google Scholar
  30. 30.
    T. Pinheiro, A. Bugalho de Almeida, L. Alves, M. C. Freitas, D. Moniz, E. Alvarez, et al., Biological monitoring of toxic metals—steel workers respiratory health survey, Nucl. Instrum. Methods B 150, 185–192 (1999).CrossRefGoogle Scholar
  31. 31.
    H. P. Misra, Adrenochrome assay, in CRC Handbook of Methods for Oxygen Radical Research, R. A. Grenwald, ed., CRC, Boca Raton, FL, pp. 237–241 (1985).Google Scholar
  32. 32.
    W. H. Habig, M. J. Pabst, and W. B. Jacoby, Glutathione S-transferases, J. Biol. Chem. 249(22), 7130–7139 (1974).PubMedGoogle Scholar
  33. 33.
    H. J. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and variance unknown, J. Am. Statist. Assoc. 64, 399–402 (1967).CrossRefGoogle Scholar
  34. 34.
    R. R. Sokal and F. J. Rohlf, Biometry, 3rd ed., W. H. Freeman, New York (1995).Google Scholar
  35. 35.
    T. K. Dickinson and J. R. Connor, Cellular distribution of iron, transferrin, and ferritin in the hypotransferrinemic (Hp) mouse brain, J. Comp. Neurobiol. 355(1), 67–80 (1995).CrossRefGoogle Scholar
  36. 36.
    A. M. Viegas-Crespo, P. A. Lopes, M. T. Pinheiro, M. C. Santos, and M. L. Mathias, Research on biochemical parameters indicative of toxicity in Mus spretus exposed to heavy metals, Euro-American Mammal Congress, p. 694 (1998).Google Scholar
  37. 37.
    P. Orsini, Facteurs regissant le repartition des souris en Europe: interet du modele souris pour une approache des processus evolutifs, These, Université Montpellier (1982).Google Scholar
  38. 38.
    A. Butet, Strategie d’utilisation des ressources et déterminisme des choix alimentaires d’un rongeur polyphage (Apodemus sylvaticus L.): l’approache énergétique, Acta Oecol. 7(3), 243–262 (1986).Google Scholar
  39. 39.
    E. Uchino, T. Tsuzuki, and K. Inoue, The effects of age and sex on seven elements of Sprague-Dawley rat organs, Lab. Anim. 24(3), 253–264 (1990).PubMedCrossRefGoogle Scholar
  40. 40.
    W. Ashraf, M. Jaffar, and D. Mohammed, Age and sex dependence of selected trace metals in scalp hair of urban population of Pakistan, Sci. Total Environ. 151(3), 227–233 (1994).PubMedCrossRefGoogle Scholar
  41. 41.
    A. O. Brinkmann, Steroid hormone receptors: activators of gene transcription, J. Pediatr. Endocrinology 7, 1–8 (1994).Google Scholar
  42. 42.
    A. S. Om and K. Chung, Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver, J. Nutr. 126, 842–848 (1996).PubMedGoogle Scholar
  43. 43.
    A. M. Viegas-Crespo, J. Neve, and R. E. Pinto, Plasma and liver selenium levels in the rat during supplementation with 0.5, 2.0, 6.0 and 15.0 ppm Se in drinking water, Biol. Trace Element Res. 38, 139–147 (1993).Google Scholar
  44. 44.
    S. Hussain, Jr., W. Slikker, and S. F. Ali, Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain, Int. J. Dev. Neurosci. 13, 811–817 (1995).PubMedCrossRefGoogle Scholar
  45. 45.
    R. Morgenstern, G. Lundovist, G. Anderson, L. Balk, and J. W. DePierre, The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms, Biochem. Pharmacol. 33(22), 3609–3614 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Paula A. Lopes
    • 1
  • Ana Maria Viegas-Crespo
    • 1
  • Ana Cláudia Nunes
    • 1
  • Teresa Pinheiro
    • 2
  • Carla Marques
    • 1
  • Maria Cristina Santos
    • 3
  • Maria da Luz Mathias
    • 1
  1. 1.Centro de Biologia Ambiental and Departamento de Zoologia, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.Departmento de FísicaInstituto Tecnológico e NuclearSacavémPortugal
  3. 3.Centro de Estudos de Bioquímica e Fisiologia and Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations