Biological Trace Element Research

, Volume 85, Issue 2, pp 137–147 | Cite as

Dental amalgam affects urinary selenium excretion

  • Paul Johan Høl
  • Jan Sverre Vamnes
  • Nils Roar Gjerdet
  • Rune Eide
  • Rolf Isrenn
Article

Abstract

Selenium may have a protective effect against mercury toxicity. The aim of the present study was to investigate if selenium excretion in urine was affected in persons with dental amalgam fillings. The reason for this study is that dental amalgam is the most important source of inorganic mercury exposure in the general population, although the potential toxic effects of this exposure remain a subject for debate.

The chelating agent 2,3 dimercaptopropane-1-sulfonate (DMPS) was injected intravenously (2 mg/kg) to provoke metal excretion. Urine samples were subsequently collected at intervals over a 24-h period. Selenium concentration was determined by hydride-generation atomic absorption spectrometry. The study was comprised of 20 persons who claimed symptoms from dental amalgam and 21 healthy persons with amalgam fillings. There were two control groups without amalgam. One control group had amalgam replaced because of concern about illness resulting from mercury release (n=20), whereas the other control group never had amalgam (n=19).

Individuals with amalgam excreted less selenium (36.4 µg, median value) over 24 hours than those without amalgam (47.5 µg) (p=0.016). There was no difference in selenium excretion between groups with (42.4 µg) and without (39.4 µg) amalgam-related symptoms (p=0.15).

The findings indicate that individuals exposed to low levels of elemental mercury from dental amalgam excrete less selenium to urine than unexposed individuals.

Index Entries

Dental amalgam selenium selenium-mercury complex urine hydride generation spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. L. Lorscheider, M. J. Vimy, and A. O. Summers, Mercury exposure from silver tooth fillings—emerging evidence questions a traditional paradigm, FASEB J. 9, 504–508 (1995).PubMedGoogle Scholar
  2. 2.
    J. R. Mackert and A. Berglund, Mercury exposure from dental amalgam fillings: absorbed dose and the potential for adverse health effects, Crit. Rev. Oral Biol. Med. 8, 410–436 (1997).PubMedGoogle Scholar
  3. 3.
    U. F. Malt, P. Nerdrum, B. Oppedal, R. Gundersen, M. Holte, and J. Löne, Physical and mental problems attributed to dental amalgam fillings: a descriptive study of 99 self-referred patients compared with 272 controls, Psychosom. Med. 59, 32–41 (1997).PubMedGoogle Scholar
  4. 4.
    D. Melchart, E. Wühr, W. Weidenhammer, and L. Kremers, A multicenter survey of amalgam fillings and subjective complaints in non-selected patients in the dental practice, Eur. J. Oral Sci. 106, 770–777 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Stenman and L. Grans, Symptoms and differential diagnosis of patients fearing mercury toxicity from amalgam fillings, Scand. J. Work Environ. Health 23(Suppl. 3), 59–63 (1997).PubMedGoogle Scholar
  6. 6.
    M. Ahlqwist, C. Bengtsson, B. Furunes, L. Hollender, and L. Lapidus, Number of amalgam tooth fillings in relation to subjectively experienced symptoms in a study of Swedish women, Community Dent. Oral Epidemiol. 16, 227–231 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    Department of Health and Human Services, Dental Amalgam: A Scientific Review and Recommended Public Health Service Strategy for Research, Education and Regulation, Department of Health and Human Services. Public Health Service, Washington, DC, (1993).Google Scholar
  8. 8.
    Health Canada, The Safety of Dental Amalgam, Health Canada, Ottawa, Canada (1996).Google Scholar
  9. 9.
    P. D. Whanger, Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis, J. Trace Element Electrolytes Health Dis. 6, 209–221 (1992).Google Scholar
  10. 10.
    P. D. Whanger, Selenium and heavy metal toxicity, in Selenium in Biology and Medicine, J. E. Spallholz, J. L. Martin, and H. E. Ganther, eds., AVI, Westport, CT, pp. 230–255 (1981).Google Scholar
  11. 11.
    D. G. Ellingsen, Y. Thomassen, J. Aaseth, and J. Alexander, Cadmium and selenium in blood and urine related to smoking habits and previous exposure to mercury vapour, J. Appl. Toxicol. 17, 337–343 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Drasch, E. Wanghofer, G. Roider, and S. Strobach, Correlation of mercury and selenium in the human kidney, J. Trace Elements Med. Biol. 10, 251–254 (1996).Google Scholar
  13. 13.
    D. V. Frost, Selenium and vitamin E as antidotes to heavy metal toxicities, in Selenium in Biology and Medicine, J. E., Spallholz, ed., AVI, Westport, CT, pp. 490–498 (1981).Google Scholar
  14. 14.
    J. Parizek and I. Ostadalova, The protective effect of small amounts of selenite in sublimate intoxication, Experientia 23, 142–143 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Naganuma and N. Imura, Changes in distribution of mercury and selenium in soluble fractions of rabbit tissues after simultaneous administration, Pharmacol. Biochem. Behav. 13, 537–544 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    M. L. A. Cuvin-Aralar and R. W. Furness, Mercury and selenium interaction: a review, Ecotoxicol. Environ. Safety 21, 348–364 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    K. T. Suzuki, C. Sasakura, and S. Yoneda, Binding sites for the (Hg-Se) complex on selenoprotein P, Biochim. Biophys. Acta 1429, 102–112 (1998).PubMedGoogle Scholar
  18. 18.
    L. Hagmar, M. Persson-Moschos, B. Akesson, and A. Schütz, Plasma levels of selenium, selenoprotein P and glutathione peroxidase and their correlations to fish intake and serum levels of thyrotropin and thyroid hormones: a study on Latvian fish consumers, Eur. J. Clin. Nutr. 52, 796–800 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    H. M. Meltzer, K. Bibow, I. T. Paulsen, H. H. Mundal, G. Norheim, and H. Holm, Different bioavailability in humans of wheat and fish selenium as measured by blood-platelet response to increased dietary Se, Biol. Trace Element Res. 36, 229–241 (1993).Google Scholar
  20. 20.
    C. Sasakura and K. T. Suzuki, Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P, J. Inorg. Biochem. 71, 159–162 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    Y. Xia, X. Zhao, L. Zhu, and P. D. Whanger, Metabolism of selenate and selenomethionine by a selenium-deficient poulation of men in China, J. Nutr. Biochem. 3, 202–210 (1992).CrossRefGoogle Scholar
  22. 22.
    T. W. Clarkson, The toxicology of mercury, Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).PubMedCrossRefGoogle Scholar
  23. 23.
    J. C. Hansen, Has selenium a beneficial role in human exposure to inorganic mercury? Med. Hypotheses 25, 45–53 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    G. N. Schrauzer, Quecksilber-Selen-Wechselwirkungen und das Zahnamalgam-Problem, in Status Quo and Perspectives of Amalgam and Other Dental Materials, L. T. Friberg and G. N. Schrauzer, eds., Thieme, Stuttgart, pp. 106–118 (1995).Google Scholar
  25. 25.
    G. Drasch, S. Mailander, and C. Schlosser, Content of non-mercury-associated selenium in human tissues, Biol. Trace Element Res. 77, 219–230 (2000).CrossRefGoogle Scholar
  26. 26.
    I. Falnoga, M. Tusek-Znidaric, M. Horvat, and P. Stegnar, Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers, Environ. Res. 84, 211–218 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    B. M. Eley, A study of mercury redistribution, excretion and renal pathology in guineapigs implanted with powdered dental amalgam for between 2 and 4 years, J. Exp. Pathol. (Oxford) 71, 375–393 (1990).Google Scholar
  28. 28.
    B. M. Eley and S. W. Cox, Influence of a standard laboratory diet containing nutritionally adequate levels of selenium on renal pathology from mercury released by experimental amalgam tattoos, Biomaterials 9, 339–344 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Robinson, M. Robinson, O. Levander, and C. Thomson, Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes, Am. J. Clin. Nutr. 41, 1023–1031 (1985).PubMedGoogle Scholar
  30. 30.
    M. Janghorbani, M. J. Christensen, A. Nahapetian, and V. R. Young, Selenium metabolism in healthy adults: quantitative aspects using the stable isotope 74SeO3(2−), Am. J. Clin. Nutr. 35, 647–654 (1982).PubMedGoogle Scholar
  31. 31.
    J. M. G. Lafuente, M. L. F. Sanchez, and A. SanzMedel, Speciation of inorganic selenium and selenoaminoacids by on-line reversed-phase high-performance liquid chromatography focused microwave digestion hydride generation atomic detection, J. Anal. Atomic Spectrom. 11, 1163–1169 (1996).CrossRefGoogle Scholar
  32. 32.
    B. Gammelgaard, K. D. Jessen, F. H. Kristensen, and O. Jøns, Determination of trimethylselenonium ion in urine by ion chromatography and inductively coupled plasma mass spectrometry detection, Anal. Chim. Acta 404, 47–54 (2000).CrossRefGoogle Scholar
  33. 33.
    A. J. Blotcky, J. P. Claassen, E. P. Rack, and D. M. Shoop, Evaluation of methods for separation of trimethylselenonium ion as a major, minor or general metabolite using neutron-activation analysis, J. Radioanal. Nucl. Chem. 181, 395–400 (1994).CrossRefGoogle Scholar
  34. 34.
    A. T. Nahapetian, V. R. Young, and M. Janghorbani, Measurement of trimethylselenonium ion in human urine, Anal. Biochem. 140, 56–62 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    J. S. Vamnes, R. Eide, R. Isrenn, P. J. Høl, and N. R. Gjerdet, Diagnostic value of DMPS in patients with symptoms allegedly caused by amalgam fillings, J. Dent. Res. 79, 868–874 (2000).PubMedCrossRefGoogle Scholar
  36. 36.
    A. Alegria, R. Barbera, R. Farre, E. Ferrer, M. J. Lagarda, and M. A. Torres, Optimization of selenium determination in human milk and whole blood by flow injection hydride atomic absorption spectrometry, J. AOAC Int. 81, 457–461 (1998).PubMedGoogle Scholar
  37. 37.
    L. Björkman, G. Sandborgh-Englund, and J. Ekstrand, Mercury in saliva and feces after removal of amalgam fillings, Toxicol. Appl. Pharmacol. 144, 156–162 (1997).PubMedCrossRefGoogle Scholar
  38. 38.
    G. B. Lygre, P. J. Høl, R. Eide, R. Isrenn, and N. R. Gjerdet, Mercury and silver in saliva from subjects with symptoms self-related to amalgam fillings, Clin. Oral Invest. 3, 216–218 (1999).CrossRefGoogle Scholar
  39. 39.
    D. G. Ellingsen, H. P. Nordhagen, and Y. Thomassen, Urinary selenium excretion in workers with low exposure to mercury-vapor, J. Appl. Toxicol. 15, 33–36 (1995).PubMedCrossRefGoogle Scholar
  40. 40.
    D. G. Ellingsen, R. I. Holland, Y. Thomassen, M. Landro-Olstad, W. Frech, and H. Kjuus, Mercury and selenium in workers previosly exposed to mercury-vapor at a chloralkali plant, Br. J. Ind. Med. 50, 745–752 (1993).PubMedGoogle Scholar
  41. 41.
    L. Barregård, Y. Thomassen, A. Schütz, and S. L. Marklund, Levels of selenium and antioxidative enzymes following occupational exposure to inorganic mercury, Sci. Total Environ. 99, 37–47 (1990).PubMedCrossRefGoogle Scholar
  42. 42.
    K. M. Hurlbut, R. M. Maiorino, M. Mayersohn, R. C. Dart, D. C. Bruce, and H. V. Aposhian, Determination and metabolism of dithiol chelating-agents XVI: pharmacokinetics of 2,3-dimercapto-1-propanesulfonate after intravenous administration to human volunteers, J. Pharmacol. Exp. Ther. 268, 662–668 (1994).PubMedGoogle Scholar
  43. 43.
    P. J. Høl, J. S. Vamnes, N. R. Gjerdet, R. Eide, and R. Isrenn, Dental amalgam and selenium in blood, Environ. Res. 87, 141–146 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Paul Johan Høl
    • 1
  • Jan Sverre Vamnes
    • 1
  • Nils Roar Gjerdet
    • 1
  • Rune Eide
    • 1
  • Rolf Isrenn
    • 2
  1. 1.Department of Odontology—Dental BiomaterialsUniversity of BergenBergenNorway
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations