Reduction of vanadium(V) with ascorbic acid and isolation of the generated oxovanadium(IV) species

  • E. G. Ferrer
  • E. J. Baran
Article

Abstract

The interaction of sodium metavanadate and VOCl3 with ascorbic acid, one of the possible natural reducing agents of vanadium(V) to oxovanadium(IV), has been investigated. Three new VO2+ complexes could be isolated as microcrystalline powders. One of them, of composition K1.5Na0.5[VO(HAsc)(OH)3], contains ascorbic acid as a monodentate ligand. In the other two, K[VO(Diketo)(OH)]·H2O and Na3[VO(Diketo)2(OH)], the enolized form of 2,3-diketogulonic acid (one of the oxidation products of ascorbic acid), acts as a bidentate ligand. The complexes were characterized by means of electronic (absorption and reflectance) and infrared spectroscopy and magnetic susceptibility measurements. Their thermal behavior was investigated by thermogravimetric and differential thermal analyses. The interest of the investigated system in relation to vanadium detoxification is also discussed.

Index Entries

Vanadium(V) ascorbic acid oxovanadium(IV) complexes spectroscopic characterization thermal behavior vanadium detoxification 

References

  1. 1.
    E. J. Baran, Model studies related to vanadium metabolism, Bol. Soc. Chil. Quím. 42, 247–256 (1997).Google Scholar
  2. 2.
    E. J. Baran, Oxovanadium (IV) and oxovanadium (V) complexes relevant to biological systems, J. Inorg. Biochem. 80, 1–10 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    E. J. Baran, Vanadium detoxification, in Vanadium in the Environment, J. O. Nriagau, ed., Wiley, New York, Part 2, pp.317–345 (1998).Google Scholar
  4. 4.
    M. Ding, P. M. Gannett, Y. Rojanasakul, K. Liu, and X. Shi, One-electron reduction of vanadate by ascorbate and related free radical generation at physiological pH, J. Inorg. Biochem. 55, 101–112 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    E. G. Ferrer, P. A. M. Williams, and E. J. Baran, Interaction of the vanadyl(IV) cation with l-ascorbic acid and related systems, Z. Naturforsch. 53b, 256–262 (1998).Google Scholar
  6. 6.
    M. M. Jones and M. A. Basinger, Chelate antidotes for sodium vanadate and vanadyl sulfate intoxication in mice, J. Toxicol. Environ. Health 12, 749–756 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Onishi, Photometric Determination of Traces of Metals, 4th ed., J Wiley, New York, Part IIB, pp. 674–676 (1989).Google Scholar
  8. 8.
    H. G. Seiler, A. Sigel, and H. Sigel, eds., Handbook on Metals in Clinical and Analytical Chemistry, Marcel Dekker, New York, pp. 531 and 573 (1994).Google Scholar
  9. 9.
    A. Syamal, Spin-spin coupling in oxovanadium (IV) complexes, Coord. Chem. Rev. 16, 309–339 (1975).CrossRefGoogle Scholar
  10. 10.
    E. J. Baran, Spectroscopic studies of oxovanadium coordination compounds, J. Coord. Chem., in press.Google Scholar
  11. 11.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Wiley, New York (1978).Google Scholar
  12. 12.
    M. Cieslak-Golonka, M. Raczko, D. Lasut, and I. Maslanka, Electronic and infrared spectra of chromium (III) complexes isolated from the bioinorganic system: [Cr(VI)-ascorbic acid]; Cr(VI)=K2Cr2O7, KCrO3Cl, CrO2Cl2, Spectrochim. Acta 55A, 421–429 (1999).Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • E. G. Ferrer
    • 1
  • E. J. Baran
    • 1
  1. 1.Centro de Química Inorgánica (CEQUINOR/CONICET, UNLP), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations