Advertisement

Biological Trace Element Research

, Volume 83, Issue 1, pp 49–55 | Cite as

Chemotactic responses of osteoblastic MC3T3-E1 cells toward zinc chloride

  • Sanae Kanno
  • C. D. Anuradha
  • Seishiro Hirano
Article

Abstract

Although zinc (Zn) is known to participate in bone formation, its exact role in the remodeling of this tissue has not been fully clarified. The present study was designed to investigate whether Zn has a role at the resorptive sites in vitro. We investigated the migration of osteoblastic MC3T3-E1 cells in response to Zn using a Boyden chamber assay. Exposure of MC3T3-E1 cells to Zn stimulated the migration of MC3T3-E1 cells. Checkerboard analysis revealed that the migration of MC3T3-E1 cells toward Zn was a directional (chemotaxis) rather than a random (chemokinesis) motion.

Pretreatment of MC3T3-E1 cells with pertussis toxin completely blocked the chemotactic response of cells to Zn, indicating that it is mediated by G-protein-coupled receptors. Because the bone is one of the major Zn storage sites, we suggest that Zn released from bone-resorptive sites plays an important role in the recruitment of osteoblasts and bone renewal.

Index Entries

Zinc MC3T3-E1 chemotaxis bone renewal G-protein calcium platelet-derived growth factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. T. Suzuki and E. Kobayashi, Age- and sex-related changes in concentration of seven elements (Ca, Cu, Fe, Mg, P, S, and Zn) in tissues and bodily fluids of rats, Biomed. Res. Trace Elements 5, 101–111 (1994).Google Scholar
  2. 2.
    H. S. Hsieh and J. M. Navia, Zinc deficiency and bone formation in guinea pig alveolar implants, J. Nutr. 110, 1581–1588 (1980).PubMedGoogle Scholar
  3. 3.
    S. J. Jones, C. Gray, and A. Boyde, Stimulation of bone resorption-repair coupling in vitro, Anat. Embryol. 190, 339–349 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. Parfitt and B. Chir, Bone remodeling and bone loss: understanding the pathophysiology of osteoporosis, Clin. Obstet. Gynecol. 30, 789–811 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    R. O. C. Oreffo, G. R. Mundy, S. M. Seyedin, and L. F. Bonewald, Activation of the bone-derived latent TGF beta complex by isolated osteoclasts, Biochem. Biophys. Res. Commun. 158, 817–823 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Canalis, T. McCarthy, and M. Centrella, Growth factors and the regulation of bone remodeling, J. Clin. Invest. 81, 277–281 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Pfeilschifter, O. Wolf, A. Naumann, H. W. Minne, G. R. Mundy, and R. Ziegler, Chemotactic response of osteoblastlike cells to transforming growth factor β, J. Bone Miner. Res. 5, 825–830 (1990).PubMedGoogle Scholar
  8. 8.
    T. Tsukamoto, T. Matsui, M. Fukase, and T. Fujita, Platelet-derived growth factor B chain homodimer enhances chemotaxis and DNA synthesis in normal osteoblast-like cells (MC3T3-E1), Biochem. Biophys. Res. Commun. 175, 745–751 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    V. Kundra, J. A. Escobedo, A, Kazlauskas, H. K. Kim, S. G. Rhee, L. T. Williams, et al., Regulation of chemotaxis by the platelet-derived growth factor receptor-β, Nature 367, 474–476 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Sugimoto, M. Kanatani, J. Kano, H. Kaji, T. Tsukamoto, T. Yamaguchi, et al., Effects of high calcium concentration on the functions and interactions of osteoblastic cells and monocytes and on the formation of osteoclast-like cells, J. Bone Miner. Res. 8, 1445–1452 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    S. L. Godwin and S. P. Soltoff, Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways, J. Biol. Chem. 272, 11,307–11,312 (1997).Google Scholar
  12. 12.
    J. E. Hartle, II, V. Prpic, S. R. Siddhanti, R. F. Spurney, and L. D. Quarles, Differential regulation of receptor-stimulated cyclic adenosine monophosphate production by polyvalent cations in MC3T3-E1 osteoblasts, J. Bone Miner. Res. 11, 789–799 (1996).PubMedGoogle Scholar
  13. 13.
    S. Hirano, T. Asami, N. Kodama, and K. T. Suzuki, Correlation between inflammatory cellular responses and chemotactic activity in bronchoalveolar lavage fluid following intratracheal instillation of nickel sulfate in rats, Arch. Toxicol. 68, 444–449 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    T. A. Fields and P. J. Casey, Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins, Biochem. J. 321, 561–571 (1997).PubMedGoogle Scholar
  15. 15.
    M. Yamaguchi and R. Yamaguchi, Action of zinc on bone metabolism in rats, Biochem. Pharmacol. 35, 773–777 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Riccardi, J. Park, W-S. Lee, G. Gamba, E. M. Brown, and S. C. Hebert, Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor, Proc. Natl. Acad. Sci. USA 92, 131–135 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Kanai and M. A. Hediger, Primary structure and functional characterization of a high-affinity glutamate transporter, Nature 360, 467–471 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    E. M. Brown, G. Gamba, D. Riccardi, M. Lombardi, R. Butters, O. Kifor, et al., Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid, Nature 366, 575–580 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Ruat, M. E. Molliver, A. M. Snowman, and S. H. Snyder, Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals, Proc. Natl. Acad. Sci. USA 92, 3161–3165 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Sanae Kanno
    • 1
  • C. D. Anuradha
    • 1
  • Seishiro Hirano
    • 1
  1. 1.Research Center for Environmental RiskNational Institute for Environmental StudiesIbarakiJapan

Personalised recommendations