Biological Trace Element Research

, Volume 82, Issue 1–3, pp 125–132 | Cite as

Effect of high bromide levels in the organism on the biological half-life of iodine in the rat

  • Stanislav Pavelka
  • Arnošt Babický
  • Miloslav Vobecký
  • Jaroslav Lener
Article

Abstract

In experiments on rats, a significant influence of an extraordinarily high bromide intake on the whole-body biological half-life of iodine was established. Very high bromide intake (1) decreased the amount of radioiodide accumulated in the thyroid, (2) changed the proportion between the amount of iodine retained in the thyroid and the total amount of absorbed iodine, (3) significantly shortened the biological half-life of iodine in the thyroid from approximately 101 h to 33 h in animals maintained on an iodine-sufficient diet and from 92 h to about 30 h in rats fed a low-iodine diet, and (4) changed the time-course (added a further phase) of iodine elimination from the body. These changes were caused, with high probability, by an increase of iodine elimination by kidneys due to an excess of bromide. The overall picture of iodine elimination in animals fed the low-iodine diet was similar to that in animals maintained on iodine-sufficient diet.

Index Entries

Bromide iodine biological half-life rat whole-body radioactivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. D. Priest, D. Newton, J. P. Day, et al., Human metabolism of Al-26 and Ga-67 injected as citrates, Hum. Exp. Toxicol. 14, 287–293 (1995).PubMedCrossRefGoogle Scholar
  2. 2.
    D. G. Barceloux, Copper, J. Toxicol.-Clin. Toxicol. 37, 217–230 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    D. G. Barceloux, Vanadium, J. Toxicol.-Clin. Toxicol. 37, 265–278 (1999).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Takeda, J. Sawashita, and S. Okada, Biological half-lives of zinc and manganese in rat brain, Brain Res. 695, 53–58 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Kaushal, M. L. Garg, M. R. Bansal, and M. P. Bansal, Biokinetics of lead in various organs of rats using radiotracer technique, Biol. Trace Element Res. 53, 249–260 (1996).Google Scholar
  6. 6.
    S. Pavelka, A. Babický, M. Vobecký, J. Lener, and E. Švandová, Bromide kinetics and distribution in the rat. I. Biokinetics of 82Br-Bromide, Biol. Trace Element Res. 76, 57–66 (2000).CrossRefGoogle Scholar
  7. 7.
    B. Singh, D. Dhawan, B. Chand, and P. C. Mangal, Biokinetics of iodine-131 in rat thyroid following lead and lithium supplementation, Biol. Trace Element Res. 40, 287–293 (1994).CrossRefGoogle Scholar
  8. 8.
    M. Vobecký, A. Babický, and J. Lener, Effect of increased bromide intake on iodine excretion in rats, Biol. Trace Element Res. 55, 215–219 (1996).Google Scholar
  9. 9.
    S. Pavelka, A. Babický, M. Vobecký, and J. Lener, The effect of extremely high bromide intake on the biological half-life of iodine in the rat, in Mengen- und Spurenelemente 1999, M. Anke, et al., eds., Verlag Harald Schubert, Leipzig, pp. 205–209 (1999).Google Scholar
  10. 10.
    W. Buchberger, W. Holler, and K. Winsauer, Effects of sodium bromide on the biosynthesis of thyroid hormones and brominated/iodinated thyronines, J. Trace Elem. Electrolytes Health Dis. 4, 25–30 (1990).PubMedGoogle Scholar
  11. 11.
    M. Vobecký, A. Babický, J. Lener, and S. Pavelka, Biological half-life of bromine in the rat thyroid, Physiol. Res. 46, 385–389 (1997).PubMedGoogle Scholar
  12. 12.
    F. X. R. Van Leeuwen, R. Hanemaaijer, and J. G. Loeber, The effect of sodium bromide on thyroid function in the target organ and the toxic process, Arch. Toxicol. Suppl. 12, 93–97 (1988).Google Scholar
  13. 13.
    S. Pavelka, A. Babický, M. Vobecký, and J. Lener, Effect of high dose of bromide on iodine metabolism in the rat, in Industrial Toxicology ’99, V. Romančík, ed., Slovak Technical University, Bratislava, pp. 224–228 (1999).Google Scholar
  14. 14.
    J. B. Stanbury, G. L. Brownell, D. S. Riggs, et al., The adaptation of man to iodine deficiency, in Endemic Goitre, Harvard University Press, Cambridge, MA. (1954).Google Scholar
  15. 15.
    N. S. Halmi, L. T. King, R. R. Widner, et al., Renal excretion of radioiodide in rats, Am. J. Physiol. 193, 379–385 (1958).PubMedGoogle Scholar
  16. 16.
    J. Lener, A. Babický, S. Pavelka, and M. Vobecký, Impact of enhanced bromide intake on iodine accumulation in the mammary gland of the lactating rat, in Mengen-und Spurenelemente 2000, M. Anke, et al., eds., Verlag Harald Schubert, Leipzig, pp. 205–210 (2000).Google Scholar
  17. 17.
    A. G. Rauws and M. J. van Logten, The influence of dietary chloride on bromide excretion in the rat, Toxicology 3, 29–32 (1975).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Vobecký, A. Babický, S. Pavelka, and J. Lener, Uptake of iodide by rat tissues is influenced by an excessive intake of bromide, in Mengen-und Spurenelemente 1999, M. Anke, et al., eds., Verlag Harald Schubert, Leipzig, pp. 210–215 (1999).Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Stanislav Pavelka
    • 1
    • 2
  • Arnošt Babický
    • 3
  • Miloslav Vobecký
    • 3
  • Jaroslav Lener
    • 4
  1. 1.Institute of PhysiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Facultyof ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Institute of Analytical ChemistryAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  4. 4.3rd Medical FacultyCharles UniversityPrague 10Czech Republic

Personalised recommendations