Biological Trace Element Research

, Volume 79, Issue 3, pp 257–269 | Cite as

Promotion of lipid oxidation by selenate and selenite and indicators of lipid peroxidation in the rat

  • Michael A. Moak
  • Merrill J. Christensen
Article

Abstract

The AIN-93 reformulation of the AIN-76A rodent diet includes a change in selenium supplement from sodium selenite to sodium selenate to reduce dietary lipid peroxidation. A change to selenate as the standard form of Se in rat diets would render results from previous work using selenite less relevant for comparison with studies using the AIN-93 formulation. To critically examine the rationale for the AIN-93 recommendation, we prepared Torula yeast basal diets patterned as closely as possible after the AIN-93 formulation and supplemented with 0, 0.15 (adequate), or 2.0 (high) mg selenium/kg diet as sodium selenite or sodium selenate. Livers isolated from male Sprague-Dawley rats fed these diets for 15 wk showed no differences in thiobarbituric acid-reactive substances or lipid hydroperoxides measured with the ferrous oxidation in xylenol orange method. Lipids isolated from samples of high-selenate and high-selenite diets showed no differences in conjugated dienes. The addition of selenate or selenite to soybean oil did not result in an altered Oil Stability Index. These results demonstrate that selenate is not less likely than selenite to cause oxidation of other dietary components. Benefits of selenate over selenite in the diets of rodents remain to be demonstrated.

Index Entries

Rats diet peroxidation selenium selenite selenate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Reeves, F. H. Nielsen, and G. C. Fahey, Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J. Nutr. 123, 1939–1951 (1993).PubMedGoogle Scholar
  2. 2.
    C. D. Eckhert, M. K. Lockwood, and B. Shen, Influence of selenium on the microvasculature of the retina, Microvasc. Res. 45, 74–82 (1992).CrossRefGoogle Scholar
  3. 3.
    S. C. Vendeland, J. A. Butler, and P. D. Whanger, Intestinal absorption of selenite, selenate, and selenomethionine in the rat, J. Nutr. Biochem. 3, 359–365 (1992).CrossRefGoogle Scholar
  4. 4.
    National Research Council, Selenium in Nutrition, rev. ed., National Academy Press, Washington, DC (1983).Google Scholar
  5. 5.
    J. Brtko and P. Filipcik, Effect of selenite and selenate on rat liver nuclear 3,5,3′-triiodothyronine (T3) receptor, Biol. Trace Element Res. 41, 191–199 (1994).Google Scholar
  6. 6.
    J. Brtko, P. Filipcik, S. Hudecova, A. Brtkova, and J. Bransova, Nuclear all-trans retinoic acid receptors: in vitro effects of selenium, Biol. Trace Element Res. 62, 43–50 (1998).Google Scholar
  7. 7.
    B. P. Sani, J. L. Woodard, M. C. Pierson, and R. D. Allen, Specific binding proteins for selenium in rat tissues, Carcinogenesis 9, 277–284 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    Z. J. Wang, J. Zhou, and A. Peng, Metabolic differences and similarities of selenium in blood and brain of the rat following the administration of different selenium compounds, Biol. Trace Element Res. 33, 135–143 (1992).Google Scholar
  9. 9.
    National Research Council, Guide for the Care and Use of Laboratory Animals, National Academy Press, Washington, DC (1996).Google Scholar
  10. 10.
    National Research Council, Nutrient Requirements of Laboratory Animals, National Academy Press, Washington, DC (1995).Google Scholar
  11. 11.
    American Oil Chemists’ Society, Official Methods and Recommended Practices of the AOCS; Cd 12b-92, 5th ed., American Oil Chemists’ Society, Champaign, IL (1998).Google Scholar
  12. 12.
    M. Uchiyama and M. Mihara, Determination of malonaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86, 271–278 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    W. G. Willmore and K. B. Storey, Antioxidant systems and anoxia tolerance in a freshwater turtle Trachemys scripta elegans, Mol. Cell. Biochem. 170, 177–185 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    Z. Y. Jiang, A. C. Woollard, and S. P. Wolff, Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method, Lipids 26, 853–856 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Hermes Lima, W. G. Willmore, and K. B. Storey, Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange complex formation, Free Radical Biol. Med. 19, 271–280 (1995).CrossRefGoogle Scholar
  16. 16.
    M. J. Christensen, P. M. Cammack, and C. D. Wray, Tissue specificity of selenoprotein gene expression in rats, J. Nutr. Biochem. 6, 367–372 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun. 71, 952–958 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    M. J. Christensen, B. L. Nelson, and C. D. Wray, Regulation of glutathione S-transferase gene expression and activity by dietary selenium, Biochem. Biophys. Res. Commun. 202, 271–277 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130–7139 (1974).PubMedGoogle Scholar
  20. 20.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  21. 21.
    Report of the American Institute of Nutrition ad hoc Committee on Standards for Nutritional Studies, J. Nutr. 107, 1340–1348 (1977).Google Scholar
  22. 22.
    R. F. Burk and J. M. Lane, Ethane production and liver necrosis in rats after administration of drugs and other chemicals, Toxicol. Appl. Pharmacol. 50, 467–478 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    A. S. Csallany, L. C. Su, and B. Z. Menken, Effect of selenite, vitamin E and N,N′-diphenyl-p-phenylenediamine on liver organic solvent-soluble lipofuscin pigments in mice, J. Nutr. 114, 1582–1587 (1984).PubMedGoogle Scholar
  24. 24.
    J. J. Dougherty and W. G. Hoekstra, Stimulation of lipid peroxidation in vivo by injected selenite and lack of stimulation by selenate, Proc. Soc. Exp. Biol. Med. 169, 209–215 (1982).PubMedGoogle Scholar
  25. 25.
    D. Bonnes Taourel, M. C. Guerin, and J. Torreilles, Is malonaldehyde a valuable indicator of lipid peroxidation? Biochem. Pharmacol. 44, 985–988 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    D. R. Janero, Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury, Free Radical Biol. Med. 9, 515–540 (1990).CrossRefGoogle Scholar
  27. 27.
    D. Lapenna and F. Cuccurullo, TBA test and “free” MDA assay in evaluation of lipid peroxidation and oxidative stress in tissue systems [letter; comment], Am. J. Physiol. 265, H1030-H1032 (1993).PubMedGoogle Scholar
  28. 28.
    B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed., Oxford University Press, New York (1999).Google Scholar
  29. 29.
    R. F. Burk, Production of selenium deficiency in the rat, Methods Enzymol. 143, 307–313 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    M. J. Christensen, Selenium diets: deficiency and excess, in Trace Elements in Laboratory Rodents, R. R. Watson, ed., CRC, Boca Raton, FL, pp. 123–132 (1996).Google Scholar
  31. 31.
    Y. Sun, P-C. Ha, J. A. Butler, B-R. Ou, J-Y. Yeh, and P. Whanger, Effect of dietary selenium on selenoprotein W and glutathione peroxidase in 28 tissues of the rat, J. Nutr. Biochem. 9, 23–27 (1998).CrossRefGoogle Scholar
  32. 32.
    J-Y. Yeh, S. C. Vendeland, Q. Gu, J. A. Butler, B-R. Ou, and P. D. Whanger, Dietary selenium increases selenoprotein W levels in rat tissues, J. Nutr. 127, 2165–2172 (1997).PubMedGoogle Scholar
  33. 33.
    X. G. Lei, J. K. Evenson, K. M. Thompson, and R. A. Sunde, Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium, J. Nutr. 125, 1438–1446 (1995).PubMedGoogle Scholar
  34. 34.
    M. Kotrebai, M. Birringer, J. F. Tyson, E. Block, and P. C. Uden, Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents, Analyst 125, 71–78 (2000).PubMedCrossRefGoogle Scholar
  35. 35.
    O. A. Levander and R. F. Burk, Seleniuim, in Present Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer, Jr. eds., International Life Sciences Institute, Washington, DC, pp. 321 (1996).Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Michael A. Moak
    • 1
  • Merrill J. Christensen
    • 1
  1. 1.Department of Food Science and NutritionBrigham Young UniversityProvo

Personalised recommendations