Biological Trace Element Research

, Volume 79, Issue 1, pp 29–38 | Cite as

Selective accumulations of aluminum in five human arteries

  • Takeshi Minami
  • Setsuko Tohno
  • Masako Utsumi
  • Yumi Moriwake
  • Masa-Oki Yamada
  • Yoshiyuki Tohno


The aim of the present study was to determine variability of aluminum (Al) accumulation in human arteries and to observe the relationship between Al and five other elements (Ca, Fe, Mg, P, and Si) in the arteries. The Al contents in the thoracic aorta, basilar, coronary, femoral, and radial arteries of 26 human subjects were estimated by an inductively coupled plasma-atomic emission spectrometer and compared quantitatively to five elements. Al was detected in 88% of the cases in both the femoral and radial arteries, 73% in the coronary artery, 58% in the aorta, and 31% in the basilar artery. The average Al content was highest in the femoral artery (48.3 ± 15.0 µg/g dry weight) and lowest in the basilar artery (8.1 ± 3.6 µg/g). The Al had positive correlations with P, Ca, or Mg in both the aorta and femoral artery, and with Ca or P in the basilar artery. In the coronary artery, a correlation was found between Al and Si. No relationships were found between Al and each of the five elements in the radial artery. From these results, Al varied widely among the five arteries and accumulated more in the femoral and radial arteries but less in the basilar artery. These accumulations of Al were positively correlated with Ca or P in several arteries, but not sufficiently to explain the accumulation of Al. Further investigations are required to understand the mechanism of the variability of Al accumulation in the arteries.

Index Entries

Aluminum phosphorus calcium aorta basilar artery coronary artery femoral artery radial artery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Slanina, W. Frech, L.-G. Ekstr;zt, L. Lööf, S. Slorach, and A. Cedergren, Dietary citric acid enhances absorption of aluminum in antacids, Clin. Chem. 32, 539–541 (1986).PubMedGoogle Scholar
  2. 2.
    T. Nagata, M. Hayatsu, and N. Kosuge, Identification of aluminium forms in tea leaves by 27Al NMR, Phytochemistry 4, 1215–1218 (1992).CrossRefGoogle Scholar
  3. 3.
    G. A. Taylor, P. B. Moore, I. N. Ferrier, S. P. Tyere, and J. A. Edwardson, Gastrointestinal absorption of aluminum and citrate in man, J. Inorg. Biochem. 69, 165–169 (1998).CrossRefPubMedGoogle Scholar
  4. 4.
    P. Jouhanneau, G. M. Raisbeck, F. Yiou, B. Lacour, H. Banide and T. B. Drueke, Gastrointestinal absorption, tissue retention, and urinary excretion of dietary aluminum in rats determined by using 26Al, Clin. Chem. 43, 1023–1028 (1997).PubMedGoogle Scholar
  5. 5.
    J. Walton, C. Tuniz, D. Fink, G. Jacobsen, and D. Wilcox, Uptake of trace amounts of aluminum into the brain from drinking water, NeuroToxicology 16, 187–190 (1995).PubMedGoogle Scholar
  6. 6.
    A. Wicklund Glynn, A. Sparen, L.-G. Danielsson, G. Haegglund, and L. Jorhem, Bioavailability of labile aluminium in acids drinking water: a study in the rat, Fd. Chem. Toxic. 33, 403–408 (1995).CrossRefGoogle Scholar
  7. 7.
    G. F. Van Landeghem, M. E. De Broe, and P. C. D’Haese, Al and Si: their speciation, distribution, and toxicity, Clin. Biochem. 31, 385–397 (1998).CrossRefPubMedGoogle Scholar
  8. 8.
    B. Sjögren and C. G. Elinder, Proposal of a dose-response relationship between aluminium welding fume exposure and effect on the central nervous system, Med. Lav. 83, 484–488 (1992).PubMedGoogle Scholar
  9. 9.
    B. Sjögren, A. Iregrem, W. Frech, M. Hagman, L. Johansson, M. Tesarz, et al., Effects on the nervous system among welders exposed to aluminium and manganese, Occup. Environ. Med. 53, 32–40 (1996).PubMedGoogle Scholar
  10. 10.
    H. L. Elliott, F. Dryburgh, G. S. Fell, S. Sabet, and A. I. Macdougall, Aluminium toxicity during regular haemodialysis, Br. Med. J. 1, 1101–1103 (1978).PubMedGoogle Scholar
  11. 11.
    J. K. Rao, C. D. Katsetos, M. M. Herman, and J. Savory, Experimental aluminum encephalomyelopathy. Relationship to human neurodegenerative disease, Clin. Lab. Med. 18, 687–698 (1998).PubMedGoogle Scholar
  12. 12.
    B. Miöberg, E. Hellquist, H. Mallmin, and U. Lindh, Aluminum, Alzheimer’s disease and bone fragility, Acta Orthop. Scand. 68, 511–514 (1997).CrossRefGoogle Scholar
  13. 13.
    A. C. Alfrey, A. Hegg, and P. Craswell, Metabolism and toxicity of aluminum in renal failure, Am. J. Clin. Nutr. 33, 1509–1516 (1980).PubMedGoogle Scholar
  14. 14.
    P. F. Zatta, Aluminum binds to the hypoerphosphorylated Tau in Alzheimer’s disease: a hypothesis, Med. Hypotheses 44, 169–172 (1995).CrossRefPubMedGoogle Scholar
  15. 15.
    R.-W. Shin, Interaction of aluminum with paired helical filament Tau is involved in neurofibrillary pathology of Alzheimer’s disease, Gerontology 43(Suppl. 1), 16–23 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    W. J. Lukiw, H. J. Leblanc, L. A. Carver, D. R. Mclachlan, and N. G. Bazan, Run-on gene transcription in human neocortical nuclei. Inhibition by nanomolar aluminum and implications for neurodegenerative disease, J. Mol. Neurosci. 11, 67–78 (1998).CrossRefPubMedGoogle Scholar
  17. 17.
    T. Minami, M. Ichii, Y. Tohno, S. Tohno, M. Utsumi, M-o. Yamada, et al., Age-dependent aluminum accumulation in the human aorta and cerebral artery, Biol. Trace Element Res. 55, 199–205 (1996).CrossRefGoogle Scholar
  18. 18.
    R. A. Goyer, Toxic and essential metal interactions, Annu. Rev. Nutr. 17, 37–50 (1997).CrossRefPubMedGoogle Scholar
  19. 19.
    J. D. Birchall and J. S. Chappell, The chemistry of aluminum and silicon in relation to Alzheimer’s disease, Clin. Chem. 34, 265–267 (1988).PubMedGoogle Scholar
  20. 20.
    J. R. Andersen and S. Reimert, Determination of aluminium in human tissues and body fluids by Zeeman-corrected atomic absorption spectrometry, Analyst 111, 657–660 (1986).CrossRefPubMedGoogle Scholar
  21. 21.
    H. Jacomin-Gadda, D. Commenges, L. Letenneur, and J.-F. Dartigues, Silica and aluminum in drinking water and cognitive impairment in the elderly, Eopidemiology 7, 281–285 (1996).CrossRefGoogle Scholar
  22. 22.
    M. Belles, D. J. Sanchez, M. Gomez, J. Corbell, and J. L. Domingo, Silicon reduces aluminum accumulation in rats: relevance to the aluminum hypothesis of Alzheimer disease, Alzheimer Dis. Assoc. Disord. 12, 83–87 (1998).CrossRefPubMedGoogle Scholar
  23. 23.
    M. Belles, M. L. Albina, D. J. Sanchez, and J. L. Domingo, Lack of protective effects of dietary silicon on aluminium-induced maternal and developmental toxicity in mice, Pharmacol. Toxicol. 85, 1–6 (1999).PubMedGoogle Scholar
  24. 24.
    R. B. Martin, The chemistry of aluminum as related to biology and medicine, Clin. Chem. 32, 1797–1806 (1986).PubMedGoogle Scholar
  25. 25.
    J. B. Cannata, J. L. Fernández-Martin, S. J. McGregor, J. H. Brock, and D. Halls, Role of iron metabolism in absorption and cellular uptake of aluminum, Kidney Int. 39, 799–803 (1991).CrossRefPubMedGoogle Scholar
  26. 26.
    D. Verbeelen, J. Smeyers-Verbeke, I. Van Hooff, and G. De Roy, The effect of desferrioxamine on tissue aluminum concentration and bone histology in aluminum-loaded rats with renal failure, J. Trace Elements Electrolytes Health Dis. 2, 67–72 (1988).Google Scholar
  27. 27.
    S. Tohno, Y. Tohno, T. Minami, Y. Okazaki, M. Utsumi, F. Nishiwaki, et al., High accumulation of elements in the human femoral artery, Biol. Trace Element Res. 57, 27–37 (1997).Google Scholar
  28. 28.
    J. L. Greger and G. M. Radzanowski, Tissue aluminium distribution in growing, mature and aging rats: relationship to changes in gut, kidney and bone metabolism, Fd. Chem. Toxic. 33, 867–875 (1995).CrossRefGoogle Scholar
  29. 29.
    W. R. Markesbery, W. D. Ehemann, T. I. M. Hossain, M. Alauddin, and D. T. Goodin, Instrumental neutron activation analysis of brain aluminum in Alzheimer disease and aging, Ann. Neurol. 10, 511–516 (1981).CrossRefPubMedGoogle Scholar
  30. 30.
    G. J. Naylor, B. Shepherd, L. Treliving, A. McHarg, A. Smith, N. Ward, et al., Tissue aluminium concentrations stability over time, relationship to age, and dietary intake, Biol. Phychiatry 27, 884–890 (1990).CrossRefGoogle Scholar
  31. 31.
    S. V. Verstraeten, M. S. Golub, C. L. Keen, and P. I. Oteize, Myelin is a preferential target of aluminum-mediated oxidative damage, Arch. Biochem. Biophys. 344, 289–294 (1997).CrossRefPubMedGoogle Scholar
  32. 32.
    V. A. Granadillo, J. E. Tahán, O. Salgado, L. E. Elejalde, B. Rodriguez-Iturbe, G. B. Romero, et al., The influence of the blood levels of lead, aluminum and vanadium upon the arterial hypertension, Clin. Chim. Acta 233, 47–59 (1995).CrossRefPubMedGoogle Scholar
  33. 33.
    T. J. C. Neiva, D. M. Fries, H. P. Monteiro, E. A. D’Amico, and D. A. F. Chamone, Aluminum induces lipid peroxidation and aggregation of human blood platelets, Braz. J. Med. Biol. Res. 30, 599–604 (1997).PubMedGoogle Scholar
  34. 34.
    S. Sarin, V. Gupta, and K. D. Gill, Alterations in lipid composition and neuronal injury in primates following chronic aluminium exposure, Biol. Trace Element Res. 59, 133–143 (1997).Google Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Takeshi Minami
    • 1
  • Setsuko Tohno
    • 2
  • Masako Utsumi
    • 2
  • Yumi Moriwake
    • 2
  • Masa-Oki Yamada
    • 2
  • Yoshiyuki Tohno
    • 2
  1. 1.Department of Living Sciences and Program ProcessingKinki University Toyo-Oka Junior CollegeHyogoJapan
  2. 2.Laboratory of Cell Biology, Department of AnatomyNara Medical UniversityNaraJapan

Personalised recommendations