Advertisement

Biological Trace Element Research

, Volume 75, Issue 1–3, pp 21–27 | Cite as

Zinc and nitric oxide synthase inhibitor l-NAME attenuate NPY-induced feeding in mice

  • Chao-Wen Cheng
  • Pi-Yao Lin
  • Ming-Der Chen
Article

Abstract

The influences of zinc (Zn) and the nitric oxide synthase (NOS) inhibitor l-NAME on peripheral neuropeptide Y (NPY)-induced feeding in mice were investigated. Male mice received NPY (200 ng/d/mouse subcutaneously) and were separated into four groups based on cotreatments (with or without Zn [0.1 mg/mL]) and with or without l-NAME [0.2 mg/mL]) administered in drinking water for 10 d. A control group that received saline injection was also studied. The results showed that NPY, with or without any studied chemicals, did not affect body weight gain or body fat content. However, the mice that were administered NPY alone had increased energy intakes, higher serum triglyceride and free fatty acid, and lower serum glucose than saline-injected controls. NPY-treated mice that were given Zn and l-NAME cotreatments had compatible results of determined variables in comparison with control mice. This study showed that Zn and l-NAME attenuated NPY-mediated feeding and selected serum variables in mice. However, the mechanisms of the interactions among NPY, Zn and NOS, and their effects on appetite regulation, remain to be elucidated.

Index Entries

Zinc neuropeptide Y nitric oxide synthase energy intake appetite adult mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Squadrito, G. Calapai, D. Cucinotta, D. Altavilla, B. Zingarelli, M. Ioculano, et al., Anorectic activity of NG-nitro-l-arginine, an inhibitor of brain nitric oxide synthase, in obese Zucker rats, Eur. J. Pharmacol. 23, 125–128 (1993).CrossRefGoogle Scholar
  2. 2.
    J. E. Morley and J. F. Flood, Effect of competitive antagonism of NO synthetase on weight and food intake in obese and diabetic mice, Am. J. Physiol. 266, R164-R168 (1994).PubMedGoogle Scholar
  3. 3.
    A. Stricker-Krongrad, B. Beck, and C. Burlet, Nitric oxide mediates hyperphagia of obese Zucker rats:relation to specific changes in the microstructure of feeding behavior, Life Sci. 58, PL9-PL15 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    J. E. Morley, V. B. Kumar, M. Mattammal, and D. T. Villareal, Measurement of nitric oxide synthase and its mRNA in genetically obese (ob/ob) mice, Life Sci. 57, 1327–1331 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    J. E. Morley and M. B. Mattammal, Nitric oxide synthase levels in obese Zucker rats, Neurosci. Lett. 209, 137–139 (1996).PubMedCrossRefGoogle Scholar
  6. 6.
    J. E. Morley, Neuropeptide regulation of appetite and weight, Endocr. Rev. 8, 256–287 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Sahu and S. P. Kalra, Neuropeptidergic regulation of feeding behavior: neuropeptide Y, Trend Endocrinol. Metab. 4, 217–224 (1993).CrossRefGoogle Scholar
  8. 8.
    M. L. Kennedy and M. L. Failla, Zinc metabolism in genetically obese (ob/ob) mice, J. Nutr. 117, 886–893 (1987).PubMedGoogle Scholar
  9. 9.
    C. McClain, M. Stuart, E. Kasarskis, and L. Humphries, Zinc, appetite regulation and eating disorders, in Essential and Toxic Trace Elements in Human Health and Disease: An Update, A. S. Prasad, ed., Wiley-Liss, New York, pp. 47–64 (1993).Google Scholar
  10. 10.
    J. H. Y. Park, C. J. Grandjean, M. H. Hart, S. H. Erdman, P. Pour, and J. A. Vanderhoof, Effect of pure zinc deficiency on glucose tolerance and insulin and glucagon levels, Am. J. Physiol. 251, E273-E278 (1986).PubMedGoogle Scholar
  11. 11.
    P. L. Selvais, C. Labuche, N. X. Ninh, J. Ketelslegers, J. Denef, and D. M. Maiter, Cyclic feeding behaviour and changes in hypothalamic galanin and neuropeptide Y gene expression induced by zinc deficiency in the rat, J. Neuroendocrinol. 9, 55–62 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    R. G. Lee, T. M. Rains, C. Tovar-Palacio, J. L. Beverly, and N. F. Shay, Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induced feeding in rats, J. Nutr. 128, 1218–1223 (1998).PubMedGoogle Scholar
  13. 13.
    A. Persechini, K. McMillan, and B. S. S. Masters, Inhibition of nitric oxide synthase activity by Zn2+ ion, Biochemistry 34, 15,091–15,095 (1995).CrossRefGoogle Scholar
  14. 14.
    D. Berendji, V. Kolb-Bachofen, K. L. Meyer, O. Grapenthin, H. Weber, V. Wahn, et al., Nitric oxide mediates intracytoplasmic and intranuclear zinc release, FEBS Lett. 405, 37–41 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    S. P. Kalra, A. Sahu, P. S. Kalra, and W. R. Crowley, Hypothalamic neuropeptide Y: a circuit in the regulation of gonadotropin secretion and feeding behavior, Ann. NY Acad. Sci. 611, 273–283 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    W. M. Bennet, Z. L. Wang, P. M. Jones, R. M. Wang, R. F. James, N. J. London, et al., Presence of neuropeptide Y and its messenger ribonucleic acid in human islets: evidence for a possible paracrine role, J. Clin. Endocrinol. Metab. 81, 2117–2120 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Vettor, C. Pagano, M. Granzotto, P. Englaro, P. Angeli, W. F. Blum, et al., Effects of intravenous neuropeptide Y on insulin secretion and insulin sensitivity in skeletal muscle in normal rats, Diabetologia 41, 1361–1367 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    E. H. Leiter, F. Premdas, D. E. Harrison, and L. G. Lipson, Aging and glucose homeostasis in C57BL/6J male mice, FASEB J. 2, 2807–2811 (1988).PubMedGoogle Scholar
  19. 19.
    L. Cui, Y. Takagi, M. Wasa, K. Sando, J. Khan, and A. Okada, Nitric oxide synthase inhibitor attenuates intestinal damage induced bu zinc deficiency in rats, J. Nutr. 129, 792–798 (1999).PubMedGoogle Scholar
  20. 20.
    H. F. Mangian, R. G. Lee, G. L. Paul, J. L. Emmert, and N. F. Shay, Zinc deficiency suppresses plasma leptin concentrations in rats, J. Nutr. Biochem. 9, 47–51 (1998).CrossRefGoogle Scholar
  21. 21.
    C. S. Mantzoros, A. S. Prasad, F. W. J. Beck, S. Grabowski, J. Kaplan, C. Adair, et al., Zinc may regulate serum leptin concentrations in humans, J. Am. Coll. Nutr. 17, 270–275 (1998).PubMedGoogle Scholar
  22. 22.
    G. Wolf, Neuropeptides responding to leptin, Nutr. Rev. 55, 85–88 (1997).PubMedCrossRefGoogle Scholar
  23. 23.
    M. D. Chen, P. Y. Lin, and W. H. H. Sheu, Zinc status in plasma of obese individuals during glucose administration, Biol. Trace Element Res. 60, 123–129 (1997).Google Scholar
  24. 24.
    R. G. Knowles, and S. Moncada, Nitric oxide synthases in mammals, Biochem. J. 298, 249–258 (1994).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Chao-Wen Cheng
    • 1
  • Pi-Yao Lin
    • 2
  • Ming-Der Chen
    • 3
  1. 1.Department of BiologyTunghai UniversityTaichung
  2. 2.Department of ChemistryTunghai UniversityTaichung
  3. 3.Division of Endocrinology and Metabolism, Department of Internal MedicineTaichung Veterans General HospitalTaichungTaiwan, Republic of China

Personalised recommendations