Biological Trace Element Research

, Volume 75, Issue 1–3, pp 11–19 | Cite as

In vitro dialyzability of zinc from different salts used in the supplementation of infant formulas

  • A. Guillem
  • A. Alegría
  • R. Barberá
  • R. Farré
  • M. J. Lagarda
  • G. Clemente
Article

Abstract

Seven zinc salts—acetate, chloride, lactate, sulfate, citrate, gluconate, and oxide—were added to milk—and soy-based infant formulas to estimate possible differences in zinc availability depending on the type of salt used. For this purpose, an in vitro method that estimates the dialyzability of the element (i.e., the fraction available for absorption) was applied. Zinc dialyzability is always higher in milk-based products than in soy products, even when the total zinc contents are higher in the latter.

The salts can be classified according to the zinc dialyzability in the two types of formulas as follows: oxide>gluconate=chloride=lactate>citrate=acetate>sulfate. Therefore, according to the dialysis percentage, oxide and gluconate are the compounds of choice for zinc supplementation of infant formulas.

Index Entries

Dialyzability infant formulas supplementation zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Milner, Trace minerals in the nutrition of children, J. Pediatr. 117, S147-S155 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Sandström, Bioavailability of zinc, Eur. J. Clin. Nutr. 51(Suppl. 1), S17-S19 (1997).PubMedGoogle Scholar
  3. 3.
    A. H. Shankar and A. S. Prassad, Zinc and inmune function:the biological basis of altered resistance to infection, Am. J. Clin. Nutr. 68(Suppl. 2), 447S-463S (1998).PubMedGoogle Scholar
  4. 4.
    I. Lombeck and A. Fuchs, Zinc and copper in infants fed breast-milk or different formula, Eur. J. Pediatr. 153, 770–776 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    National Research Council (NRC), Recommended Dietary Allowances, 10th ed., National Academy of Sciences, Washington, DC (1989).Google Scholar
  6. 6.
    B. Lönnerdal, M. Yuen, and M. S. Huang, Calcium, iron, zinc, copper and manganese bioavailability from infant formulas and weaning diets assessed in rat pups, Nutr. Res. 14, 1535–1548 (1994).CrossRefGoogle Scholar
  7. 7.
    P. A. Walravens and K. M. Hambidge, Growth of infants fed a zinc supplemented formula, Am. J. Clin. Nutr. 29, 1114–1121 (1976).PubMedGoogle Scholar
  8. 8.
    A. Higashi, T. Ikeda, Y. Uehara, and Y. Matsuda, Effect of low content zinc and copper formula on infant nutrition, Eur. J. Pediatr. 138, 237–240 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    F. Jochum, A. Fuchs, A. Cser, H. Menzel, and I. Lombeck, Trace mineral status of full-term infants fed human milk, milk-based formula or partially hydrolysed whey, Analyst 120, 905–909 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Salmenperä, J. Perheentupa, V. Nantö, and M. A. Siimes, Exclusively breast-fed healthy infants grow slower than reference infants, Pediatr. Res. 19, 307–312 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Salmenperä, J. Perheentupa, P. Pakarinen, and M. A. Siimes, Zinc supplementaton of infant formula, Am. J. Clin. Nutr. 59, 985–989 (1994).PubMedGoogle Scholar
  12. 12.
    L. Schlesinger, M. Arevalo, S. Arredondo, M. Diaz, B. Lönnerdal, and A. Stekel, Effect of a zinc-fortified formula on immunocompetence and growth of malnourished infants, Am. J. Clin. Nutr. 56, 491–498 (1992).PubMedGoogle Scholar
  13. 13.
    J. K. Friel, W. L. Andrews, J. D. Matthew, R. D. Long, A. M. Corned, M. Cox, et al., Zinc supplementation in very low birth weight infant, J. Pediatr. Gastroenterol. Nutr. 17, 97–104 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    EEC: Commission Directive 91/321/EEC of 14 May 1991 on infant formulae and follow-on formulae. No. L175, 4/7/1991, pp. 35–49.Google Scholar
  15. 15.
    D. D. Miller, B. R. Schricker, R. R. Rasmussen, and D. Van Campen, An in vitro method for estimation of iron availability from meals, Am. J. Clin. Nutr. 34, 2248–2256 (1981).PubMedGoogle Scholar
  16. 16.
    J. Luten, H. Crews, A. Flynn, P. Van Dael, P. Kastenmayer, R. Hurrell, et al., Interlaboratory trial on the determination of the in vitro iron dialysability from food, J. Sci. Food Agric. 72, 415–424 (1996).CrossRefGoogle Scholar
  17. 17.
    B. Lönnerdal, Nutritional aspects of soy formula, Acta Paediatr. 83(Suppl. 402), 105–108 (1994).Google Scholar
  18. 18.
    B. Lönnerdal, A. Cederblad, A. Davidsson, and B. Sandström, The effect of individual components of soy formula and cow’s milk formula on zinc bioavailability, Am. J. Clin. Nutr. 40, 1064–1070 (1984).PubMedGoogle Scholar
  19. 19.
    A. A. Minihane, T. E. Fox, and S. J. Fairweather-Tait, A continuous flow in vitro method to predict bioavailability of Fe from foods, in Bioavailability ’93. Nutritional, Chemical and Food Processing Implications Nutrient Availability, Proceedings, U. Schlemmer, ed., Bundesforschungs anstalt für Ernährung, Ettlingen, Germany, Pt. 2, pp. 175–179 (1993).Google Scholar
  20. 20.
    L. Shen, J. Luten, H. Robberecht, J. Bindels, and H. Deelstra, Modification of an in-vitro method for estimating the bioavailability of zinc and calcium from foods, Z. Lebensm. Unters. Forsch. 199, 442–445 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    H. M. Edwards, Jr., The availability to chicks of zinc in various compounds and ores, J. Nutr. 69, 306–309 (1959).PubMedGoogle Scholar
  22. 22.
    D. A. Hill, A. R. Peo, Jr., A. J. Lewis, and J. D. Crenshaw, Zinc-amino acid complexes for swine, J. Anim. Sci. 63, 121–127 (1986).PubMedGoogle Scholar
  23. 23.
    J. W. Spears, Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers, J. Anim. Sci. 67, 835–843 (1989).PubMedGoogle Scholar
  24. 24.
    J. L. Pimentel, M. E. Cook, and J. L. Greger, Immune response of chicks fed various levels of zinc, Poult. Sci. 70, 947–954 (1991).PubMedGoogle Scholar
  25. 25.
    L. X. Rojas, L. R. McDowell, R. J. Cousins, F. G. Martin, N. S. Wilkinson, A. B. Johnson, et al., Interaction of different organic and inorganic zinc and copper sources fed to rats, J. Trace Element Med. Biol. 10, 139–144 (1996).Google Scholar
  26. 26.
    K. J. Wedekind and D. H. Baker, Zinc bioavailability in feed-grade zinc sources, J. Anim. Sci. 67(Suppl. 2), 126–132 (1989).Google Scholar
  27. 27.
    K. J. Wedekind and D. H. Baker, Zinc bioavailability in feed-grade sources of zinc, J. Anim. Sci. 68, 684–689 (1990).PubMedGoogle Scholar
  28. 28.
    K. J. Wedekind and D. H. Baker, Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulphate and zinc oxide. J. Anim. Sci. 70, 178–187 (1992).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • A. Guillem
  • A. Alegría
    • 1
  • R. Barberá
    • 1
  • R. Farré
    • 1
  • M. J. Lagarda
    • 1
  • G. Clemente
    • 2
  1. 1.Nutrition and Food Chemistry, Faculty of PharmacyUniversity of ValenciaBurjassotSpain
  2. 2.Department of StatisticsPolytechnical UniversityValenciaSpain

Personalised recommendations