Biological Trace Element Research

, Volume 74, Issue 2, pp 107–116 | Cite as

Blood cell lead, calcium, and magnesium levels associated with pregnancy-induced hypertension and preeclampsia

  • Earl B. Dawson
  • Douglas R. Evans
  • Randall Kelly
  • James W. Van Hook


This study compares the red blood cell (Rbc) levels of lead (Pb), calcium (Ca), and magnesium (Mg) in relation to blood pressure in 39 pregnant women in the third trimester of pregnancy. The study population included 20 women with normal pregnancies, 15 with mild hypertension, and 4 with severe hypertension and preeclampsia. The mean±SD for each group was calculated and the difference between the means of the normotensive and the other groups were compared by analysis of variance. Significant differences from normal to the preeclamptic pregnancies were in (1) elevated Rbc Pb (p≤0.001), (2) lower Rbc Ca (p≤0.001), and (3) lower Rbc Mg/Pb ratio (p≤0.0001). Pearson’s rank correlation between blood pressure showed a direct relation to the Rbc Pb level (p≤0.01) and an inverse relation to the Rbc Ca and Mg/Pb ratio (p≤0.004,≤0.007). Apparently, prenatal blood pressure is directly proportional to Rbc Pb content and related or modified by Rbc Ca and Mg.

Index Entries

Calcium magnesium lead pregnancy-induced hypertension preeclampsia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. McCarron, C. D. Morris, H. J. Henry, and J. L. Stanton, Blood pressure and nutrient intake in the United States, Science 224, 1392–1398 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    R. P. Wedeen, Blood lead levels, dietary calcium, and hypertension, Ann. Intern. Med. 102, 403–404 (1985).PubMedGoogle Scholar
  3. 3.
    M. Rabinowitz, D. Bellinger, A. Leviton, A. Needleman, and S. Schoenbaum, Pregnancy hypertension, blood pressure during labor, and blood lead levels, Hypertension 10, 447–451 (1987).PubMedGoogle Scholar
  4. 4.
    J. G. Pounds, Effect of lead intoxication on calcium homeostasis and calcium-mediated cell function: a review, Neurotoxicology 5, 295–332 (1984).PubMedGoogle Scholar
  5. 5.
    J. Villar, J. M. Belizan, J. T. Repke, et al., The effect of calcium intake on the blood pressure of young healthy individuals, Ann. NY Acad. Sci. 435, 509–511 (1984).CrossRefGoogle Scholar
  6. 6.
    J. Villar, J. M. Belizan, J. T. Repke, et al., Calcium supplementation reduces blood pressure during pregnancy: results of a randomized controlled clinical trial, Obstet. Gynecol. 70, 317–322 (1987).PubMedGoogle Scholar
  7. 7.
    N. F. Grant, G. L. Daley, S. Chand, et al. A study of angiotensin II pressor response throughout primigravid pregnancy, J. Clin. Invest. 52, 2682–2689 (1973).CrossRefGoogle Scholar
  8. 8.
    N. Kawasaki, K. Matsui, I. Masahara, et al. Effect of calcium supplementation on the vascular sensitivity to angiotensin II in pregnant women, Am. J. Obstet. Gynecol. 153, 576–582 (1982).Google Scholar
  9. 9.
    R. V. Carsia, D. Forman, C. E. Hock, et al., Lead alters growth and reduces angiotensin II receptor density of rat aortic smooth muscle cells, Proc. Exp. Biol. Med. 210, 180 (1995).Google Scholar
  10. 10.
    P. C. Zemel, M. B. Zemel, M. Arberg, et al. Metabolic and hemodynamic effects of magnesium supplementation in patients with essential hypertension, Am. J. Clin. Nutr. 51, 665–669 (1990).PubMedGoogle Scholar
  11. 11.
    L. M. Resnick, R. K. Gupta, and J. H. Laragh, Intracellular free magnesium in erythrocytes of essential hypertension: relation to blood pressure and serum divalent cations, Med. Sci. 81, 6511–6515 (1984).Google Scholar
  12. 12.
    A. L. Tranquilli, L. Mazzanti, R. Staffolani, E. Salvolini, G. G. Garzetti, and C. Romanini, Functional platelet modifications induced by oral magnesium supplementation in normotensive and hypertensive pregnancy, Boll.-Soc. Ital. Biol. Sper. 70, 249–256 (1994).PubMedGoogle Scholar
  13. 13.
    Y. Frenkel, M. Weiss, M. Shefi, A. Lusky, S. Mashiach, and E. Dolev, Mononuclear cell magnesium content remains unchanged in various hypertensive disorders of pregnancy, Gynecol. Obstet. Invest. 38, 220–222 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Seydoux, E. Girardin, L. Paunier, and F. Beguin, Serum and intracellular magnesium during normal pregnancy and in patients with pre-eclampsia, Br. J. Obstet. Gynaecol. 99, 207–211 (1992).PubMedGoogle Scholar
  15. 15.
    M. Rudnicki, A. Frolich, W. F. Rasmussen, and P. McNair, The effect of magnesium on maternal blood pressure in pregnancy-induced hypertension. A randomized double-blind placebo-controlled trail, Acta Obstet. Gynecol. Scand. 70, 445–450 (1991).PubMedGoogle Scholar
  16. 16.
    F. G. Cunningham, P. C. MacDonald, N. F. Gant, K. J. Leveno, L. C. Gilstrap, G. D. V. Hankins, et al., Williams Obstetrics, 20th ed., Appleton and Lange, Stamford, CT (1997).Google Scholar
  17. 17.
    E. B. Dawson, R. R. Clark, and W. J. McGanity, A study of nine cation levels in term placentae: changes associated with toxemia of pregnancy and fetal maturity, Am. J. Obst. Gynecol. 104, 1144–1147 (1969).Google Scholar
  18. 18.
    E. B. Dawson, T. D. Moore, M. J. Dotson, and W. J. McGanity, Relationship between mineral metabolism and cardiovascular disease, Am. J. Clin. Nutr. 31, 1188–1197 (1978).PubMedGoogle Scholar
  19. 19.
    K. M. Hambidge and A. M. Mauer, Trace Elements, in Laboratory Indices of Nutrition Status in Pregnancy, National Academy of Sciences, Washington, DC, pp. 157–193 (1978).Google Scholar
  20. 20.
    F. E. Hytten and A. M. Thomson, Maternal Physiological Adjustments, in Maternal Nutrition and the Course of Pregnancy, National Academy of Sciences, Washington, DC, pp. 41–73 (1970).Google Scholar
  21. 21.
    J. A. Pritchard, Changes in the blood volume during pregnancy and delivery, Anesthesiology 26, 393–399 (1965).PubMedCrossRefGoogle Scholar
  22. 22.
    P. E. Desilva, Blood lead levels and the hematocrit correction, Ann. Occup. Hyg. 28, 417–428 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    G. G. Duggin, N. E. Dlae, R. C. Lyneham, R. A. Evans, and D. J. Tiller, Calcium balance in pregnancy, Lancet 2, 926–927 (1974).PubMedCrossRefGoogle Scholar
  24. 24.
    J. Z. Heaney and T. G. Skillman, Calcium metabolism in normal human pregnancy, J. Clin. Endocrinol. Metab. 33, 661–670 (1971).PubMedCrossRefGoogle Scholar
  25. 25.
    J. T. Repke, Prevention of preeclampsia, Clin. Perinatol. 18, 779–792 (1991).PubMedGoogle Scholar
  26. 26.
    D. Holtzman, J. S. Hsu, and P. Mortell, In vitro effects of inorganic leak on isolated rat brain mitochondrial respiration, Neurokyme Res. 3, 195–206 (1978).Google Scholar
  27. 27.
    D. R. Pair and E. Harris, The effect of lead on the calcium handling capacity of rat heart mitochondria, Biochem. J. 158, 289–294 (1976).Google Scholar
  28. 28.
    G. W. Goldstein, Lead encephalopathy: the significance of lead inhibition of calcium uptake by brain mitochondria, Brain Res. 136, 185–188 (1970).CrossRefGoogle Scholar
  29. 29.
    S. C. Kapoor and G. D. V. Van Rossum, Effect of lead in vitro on movements of calcium in kidney cortex slices and mitochondria, Pharmacologist 19, 180 (1977).Google Scholar
  30. 30.
    J. L. Bocik, The binding of metal ions to ATP: A proton and phosphorous NMR investigation of dimagnetic metal-ATP complexes, J. Inorg. Biochem. 12, 119–130 (1980).CrossRefGoogle Scholar
  31. 31.
    M. Sorell, J. F. Rosen, and M. Roginsky, Interactions of lead, calcium, vitamin D, and nutrition in lead-burdened children, Arch. Environ. Health 32, 160–164 (1977).Google Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Earl B. Dawson
    • 1
  • Douglas R. Evans
    • 1
  • Randall Kelly
    • 1
  • James W. Van Hook
    • 1
  1. 1.Division of Maternal-Fetal Medicine, Department of Obstetrics & GynecologyThe University of Texas Medical BranchGalveston

Personalised recommendations