Biological Trace Element Research

, Volume 73, Issue 1, pp 37–45 | Cite as

Alterations in serum and brain trace element levels after antidepressant treatment. Part II. Copper

  • Małgorzata Schlegel-Zawadzka
  • Gabriel Nowak
Article

Abstract

We have studied the effect of chronic treatment with imipramine, citalopram, and electroconvulsive shock (ECS) on serum and brain copper levels in rats. Chronic treatment with citalopram and imipramine (but not ECS) significantly (approx 14%) decreased the serum copper level. Chronic treatment with both drugs did not alter the brain copper level. However, chronic ECS induced a significant increase (by 36%) in the copper level in the hippocampus and also in the cerebellum (by 16%). In contrast to the zinc, where both pharmacologic and ECS treatment increased its hippocampal concentration, these two antidepressant therapy (drugs versus ECS) differ in their effect on brain copper level. These findings suggest that the mechanism by which copper is involved in ECS differs from that of any involvement in the action of the drugs studied.

Index Entries

Antidepressant drugs ECS copper level brain serum rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. R. Frausto da Silva, and R. J. P. Williams, Copper: extracytoplasmic oxidases and matrix formation, in The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, J. J. R. Frausto da Silva and R. J. P. Williams, eds., Oxford University Press, New York, pp. 388–399 (1994).Google Scholar
  2. 2.
    L. Stryer, Biochemistry, W. H Freeman, New York (1995).Google Scholar
  3. 3.
    A. Furuta, D. L. Price, C. A. Pardo, J. C. Tronsoco, Z. S. Xu, and L. J. Martin, Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus, Am. J. Pathol. 146, 357–367 (1995).PubMedGoogle Scholar
  4. 4.
    S. J. Fairweather-Tait, Bioavailability of copper, Eur. J. Clin. Nutr. 51(Suppl. 1), S24-S26 (1997).PubMedGoogle Scholar
  5. 5.
    E. D. Harris, Copper transport: an overview. Proc. Soc. Exp. Biol. Med. 196, 130–140 (1991).PubMedGoogle Scholar
  6. 6.
    B. N. Patel, and S. David, A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes, J. Biol. Chem. 272, 20,185–20,190 (1997).Google Scholar
  7. 7.
    M. Maes, S. Sharpe, L. van Grootel, W. Wyttenbroeck, W. Cooreman, P. Cosyns, et al., Higher a1-antitrypsin, haptoglobin, ceruloplasmin and lower retinol binding protein plasma levels during depression: further evidence for the existence of an inflammatory response during that illness, J. Affect. Disord. 24, 183–192 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    C. R. Hansen, M. Malecha, Jr., T. B. Mackenzie, and J. Kroll, Copper and zinc deficiences in association with depression and neurological findings, Biol. Psychiatry 18, 395–401 (1983).PubMedGoogle Scholar
  9. 9.
    M. Maes, E. Vandoolaeghe, H. Neels, P. Demedts, A. Wauters, H. Y. Meltzer, et al., Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness, Biol. Psychiatry 42, 349–358 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    M. C. Linder, Nutrition and metabolism of the trace elements, in Nutritional Biochemistry and Metabolism with Clinical Applications, M. C. Linder, ed., Elsevier Science, New York, pp. 151–198 (1985).Google Scholar
  11. 11.
    Q. R. Smith, Regulation of metal uptake and distribution within brain, in Nutrition and the Brain, R. J. Wurtman, and J. J. Wurtman, eds., Vol. 8, pp. 25–74 (1990).Google Scholar
  12. 12.
    M. Schlegel-Zawadzka, M. Krośniak, and G. Nowak, Brain copper levels after antidepressant treatment, in Metal Ions in Biology and Medicine, Ph. Collery, P. Bratter, V. Negretti de Bratter, L. Khassanova, and J. C. Etienne, eds, John Libbey Eurotext, Paris, Vol. 5, pp. 703–706 (1998).Google Scholar
  13. 13.
    M. A. Deibel, W. D. Ehmann, and W. R. Markesbery, Copper, iron, and zinc imbalances in severity degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress, J. Neurol. Sci. 143, 137–142 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    D. A. Loeffler, P. A. LeWitt, P. L. Juneau, A. A. Sima, H. U. Nguyen, A. J. DeMaggio, et al., Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders, Brain Res. 738, 265–274 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    X. L. Yang, N. Miura, Y. Kawarada, K. Terada, K. Petrukhin, T. Gilliam, et al., Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem. J. 15(Pt. 3), 326, 897–902 (1997).Google Scholar
  16. 16.
    A. Crowe and E. H. Morgan, The effects of iron loading and iron deficiency on the tissue uptake of 64Cu during development in the rat, Biochim. Biophys. Acta 1291, 53–59 (1996).PubMedGoogle Scholar
  17. 17.
    C. D. Hunt and J. P. Idso, Moderate copper deprivation during gestation and lactation affects dentate gyrus and hippocampal maturation in immature male rats, J. Nutr. 125, 2700–2710 (1995).PubMedGoogle Scholar
  18. 18.
    N. Nakagawa, Studies on changes in trace elements of the brain related to aging (in Japanese), Hokkaido J. Med. Sci. 73, 181–199 (1998).PubMedGoogle Scholar
  19. 19.
    D. E. Ray, Physiological factors predisposing to neurotoxicity. Arch. Toxicol. Suppl. 19 219–226 (1997).Google Scholar
  20. 20.
    T. Takeda, M. Kimura, K. Yokoi, and Y. Itokawa, Effect of age and dietary protein level on tissue mineral levels in female rats, Biol. Trace Element Res. 54, 55–74 (1996).Google Scholar
  21. 21.
    M. Vahter, E. Lutz, B. Lind, P. Herin, T. H. Bui, and I. Krakau, Concentrations of copper, zinc and selenium in brain and kidney of second trimester fetuses and infants, J. Trace Element Med. Biol. 11, 215–222 (1997).Google Scholar
  22. 22.
    J. Chmielnicka and M. Nasiadek, Tissue distribution and urinary excretion of essential elements in rats orally exposed to aluminium chloride, Biol. Trace Element Res. 31, 131–138 (1991).Google Scholar
  23. 23.
    A. Gupta and G. S. Shukla, Ontogenic profile of brain lipids following perinatal exposure to cadmium. J. Appl. Toxicol. 16, 227–233 (1996).PubMedCrossRefGoogle Scholar
  24. 24.
    J. R. Prohaska, Functions of trace elements in brain metabolism, Physiol. Rev. 67, 858–901 (1987).PubMedGoogle Scholar
  25. 25.
    P. Perez, A. Flores, A. Santamaria, C. Rios, and S. Galvan-Arzate, Changes in transition metal contents in rat brain regions after in vivo quinolinate intrastrial administration, Arch. Med. Res. 27, 449–452 (1996).PubMedGoogle Scholar
  26. 26.
    C. W. Levenson, Mechanisms of copper conservation in organs, Am. J. Clin. Nutr. 67(Suppl.), 978S-981S (1998).PubMedGoogle Scholar
  27. 27.
    C. W. Levenson and M. Janghorbani, Long-term measurement of organ copper turnover in rats by continuous feeding of a stable isotope, Anal. Biochem. 221, 243–249 (1994).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Nowak, and M. Schlegel-Zawadzka, Alterations in serum and brain trace elements after antidepressant treatment. Part I. Zinc, Biol. Trace Element Res. 67, 85–92 (1999).Google Scholar
  29. 29.
    P. Skolnick, R. T. Layer, P. Popik, G. Nowak, I. A. Paul, and R. Trullas. Adaptation of N-methyl-d-asparate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression, Pharmacopsychiatry 29, 23–26 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Małgorzata Schlegel-Zawadzka
    • 1
  • Gabriel Nowak
    • 2
    • 3
  1. 1.Department of Food Chemistry and NutritionPoland
  2. 2.Laboratory of Radioligand Research Collegium Medium Jagiellonian UniversityKrakówPoland
  3. 3.Institute of PharmacologyPolish Academy of SciencesKrakówPoland

Personalised recommendations