Biological Trace Element Research

, Volume 114, Issue 1–3, pp 313–318 | Cite as

Differences in the binding modes of phytochelatin to cadmium (II) and Zinc(II) ions

  • Rinya Kobayashi
  • Etsuro Yoshimura
Original Articles

Abstract

An 1H NMR (nuclear magnetic resonance) spectroscopic structural analysis of Cd2+ complexes formed with the pentapeptide phytochelatin, (NH3)+−(ψ-Glu-Cys)2−Gly−COO−(PC2), at a pH of 7.5 showed that the two thiol groups of the Cys residues and either the carbonyl or amide group of the peptide bond between Glu1 and Cys1 act as possible donor groups in the complexes at Cd2+/PC2 ratios up to 0.4. As the ratio increases, the carboxylate group of Glu2 and either the carbonyl or amide group of the peptide bond between Cys1 and Glu2 comes to serve as a donor group. The manner in which Cd2+ forms complexes with PC2 is distinctly different from Zn2+ and might account for the role of phytochelatin in Cd2+ detoxification. Electron absorption spectrometry demonstrated that the Cd2+ complexes are coordinated in a tetrahedral fashion by four thiol groups and that several sulfur atoms might bridge Cd2+ ions, resulting in the formation of polynuclear complexes. This contrasts with Zn2+ complex formation, which consists exclusively of a 1:1 complex.

Index Entries

Phytochelatin Cd2+ Zn2+ 1H NMR electronic absorption spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Grill, E.-L. Winnacker, and M. H. Zenk, Phytochelatins: the principle heavy-metal complexing peptides of higher plants, Science 230, 674–676 (1985).CrossRefGoogle Scholar
  2. 2.
    W. Gekker, E. Grill, E.-L. Winnacker, and M. H. Zenk, Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins, Z. Naturforsch. 44c, 361–369 (1986).Google Scholar
  3. 3.
    N. Kondo, K. Imai, M. Isobe, et al., Cadystin-A and cadystin-B, major unit peptides comprising cadmium binding peptides induced in a fission yeast: separation, revision of structures and synthesis, Tetrahedron Lett. 25, 3869–3872 (1984).CrossRefGoogle Scholar
  4. 4.
    E. Grill, E.-L. Winnacker, and M. H. Zenk, Phytochelatins, a class of heavy-metal binding peptides from plants, are functionally analogous to metallothioneins, Proc. Natl. Acad. Sci. USA 84, 439–443 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Clemens, E. J. Kim, D. Neumann, and J. I. Schroeder, Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast, EMBO J. 18, 3325–3333 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    S. B. Ha, A. P. Smith, R. Hoeden, et al., Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe, Plant Cell 11, 1153–1163 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    O. K. Vatamaniuk, S. Mari, Y.-P. Lu, and P. A. Rea, AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution, Proc. Natl. Acad. Sci. USA 96, 7110–7115 (1999).PubMedCrossRefGoogle Scholar
  8. 8.
    O. K. Vatamaniuk, E. A. Bucher, J. T. Ward, and P. A. Rea, A new pathway for heavy metal detoxification in animals, J. Biol. Chem. 276, 20,817–20,820 (2001).CrossRefGoogle Scholar
  9. 9.
    K. L. Davies, M. S. Davies, and D. Francis, The influence of an inhibitor of phytochelatin synthesis on root growth and root meristermatic activity in Festuca rubra L. in response to zinc, New Phytol. 118, 565–570 (1991).CrossRefGoogle Scholar
  10. 10.
    H. Satofuka, S. Amano, H. Atomi, et al., Rapid method for detection and detoxification of heavy metal ions in water environments using phytochelatin, J. Biosci. Bioeng. 88, 287–292 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Yoshimura, R. Kobayashi, K. Furihata, H. Kajiwara, and S. Yamazaki, H-1 and C-13 NMR spectral assignment of phytochelatin, Magn. Reson. Chem. 38, 141 (2000).CrossRefGoogle Scholar
  12. 12.
    M. J. Stillman, Optical spectroscopy of metallothionein, in Metallothioneins: Synthesis, structure and properties of metallothioneins, phytochelatins, and metal-thiolate complexes, M. J. Stillman, C. F. Shaw III, and K. T. Suzuki, eds., VCH, New York, pp. 56–127 (1992).Google Scholar
  13. 13.
    V. Dorčák and A. Kreżel, Correlation of acid-base chemistry of phytochelatin PC2 with its coordination towards the toxic metal ion Cd(II), J. Chem. Soc. Dalton Trans. 2253–2259 (2003).Google Scholar
  14. 14.
    J. H. R. Kägi and B. L. Vallee, Metallothionein: a cadmium and zinc-containing protein from equine renal cortex. II. Physicochemical properties, J. Biol. Chem. 236, 2435–2442 (1961).PubMedGoogle Scholar
  15. 15.
    A. H. Robbins and C. D. Stout, Crystal structure metallothionein, in Metallothioneins: Synthesis, structure and properties of metallothioneins, phytochelatins, and metal-thiolate complexes, M. J. Stillman, C. F. Shaw III, and K. T. Suzuki, eds., VCH, New York, pp. 31–54 (1992).Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Rinya Kobayashi
    • 1
  • Etsuro Yoshimura
    • 1
  1. 1.Department of Applied Biological ChemistryThe University of TokyoTokyoJapan

Personalised recommendations