Advertisement

Biological Trace Element Research

, Volume 114, Issue 1–3, pp 225–235 | Cite as

Urinary yttrium excretion and effects of yttrium chloride on renal function in rats

  • Satsuki Hayashi
  • Kan Usuda
  • Go Mitsui
  • Takahiro Shibutani
  • Emi Dote
  • Kazuya Adachi
  • Michiko Fujihara
  • Yukari Shimbo
  • Wei Sun
  • Rei Kono
  • Hiroshi Tsuji
  • Koichi Kono
Original Articles

Abstract

Evaluation of yttrium exposure in biological samples has not been fully examined. To evaluate yttrium nephrotoxicity, yttrium chloride was orally administered to male Wistar rats and the urine volume (UV) and N-acetyl-β-d-glucosaminidase (NAG) and creatinine excretion (Crt) were measured in 24-h urine samples. The urinary yttrium concentration and excretion rate were determined by inductively coupled plasma-argon emission spectrometry (ICP-AES). Large significant decreases of UV (>30%) and Crt (>10%) were observed at yttrium doses of 58.3–116.7 mg per rat, but no significant NAG changes was observed. This response pattern shows that a high yttrium dosage alters glomerular function rather than the proximal convoluted tubules. A urinary yttrium excretion rate of 0.216% and good dose-dependent urinary excretion (r=0.77) were confirmed. These results suggest that urinary yttrium is a suitable indicator of occupational and environmental exposure to this element, an increasingly important health issue because recent technological advances present significant potential risks of exposure to rare earth elements. We propose that the ICP-AES analytical method and animal experimental model described in this study will be a valuable tool for future research on the toxicology of rare earth elements.

Index Entries

Renal function urinary yttrium rare earth elements ICP-AES nephrotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Sastri, J. C. Bunzli, J. R. Perumareddi, V. Ramachandra Rao, and G. V. S. Rayudu, Modern Aspects of Rare Earths and Their Complexes, Elsevier, Amsterdam (2003).Google Scholar
  2. 2.
    H. Zhang, J. Feng, W. Zhu, C. Liu, D. Wu, W. Yang, and J. Gu, Rare-earth element distribution characteristics, of biological chains in rare-earth element-high background regions and their implications, Biol. Trace Element Res. 73, 19–27 (2000).CrossRefGoogle Scholar
  3. 3.
    H. Zhang, J. Feng, W. Zhu, et al., Chronic toxicity of rare-earth elements on human beings: implications of blood biochemical indices in REE-high regions, South Jiangxi, Biol. Trace Element Res. 73, 1–17 (2000).CrossRefGoogle Scholar
  4. 4.
    X. A. Chen, Y. E. Cheng, and Z. Rong, Recent results from a study of thorium lung burdens and health effects among miners in China, J. Radiol. Prot. 25, 451–460 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    R. L. Peng, X.C. Pan, and Q. Xie, Relationship of the hair content of rare earth elements in young children aged 0 to 3 years to that in their mothers living in a rare earth mining area of Jiangxi Zhonghua, Yu Fang Yi Xue Za Zhi 37, 20–22 (2003).Google Scholar
  6. 6.
    Icon Group International, Inc. The World Market for Inorganicor Organic Rare-Earth Metal Compounds or Yttrium or Scandium Mixtures: A 2004 Global Trade Perspective, Icon Group International, Inc., San Diego (2003).Google Scholar
  7. 7.
    P. Lobinger, H. Jarzina, H. W. Roesky, et al., New synthetic approach to yttrium hydroxoacetates, structural characterization, and use as a precursor for coated conductors, Inorg. Chem. 44, 9192–9196 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Yamamoto, T. Tanji, M. Hibino, P. Schauer, and R. Autrata, Improvement of light collection efficiency of lens-coupled YAG screen TV system for a high-voltage electron microscope. Microsc. Res. Tech. 15, 596–604 (2000).CrossRefGoogle Scholar
  9. 9.
    A. A. Bevin, E. C. Parlette, Y. Domankevitz and E. V. Ross, Variable-pulse Nd: YAG laser in the treatment of facial telangiectasias, Dermatol. Surg. 32 7–12 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Galli, C. Parrilla, A. Fiorita, M. R. Marchese, and G. Paludetti, Erbrium: yttrium-aluminum-garnet laser application in stapedotomy, Otolaryngol. Head Neck Surg. 133, 923–928 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    E. M. Neizvestnova, T. D. Grekhova, L. I. Privalova, O. M. Babakova, N. E. Konovalova, and E. V. Petelina, Hygienic regulation of yttrium, terbium, ytterbium and lutetinum fluorides in the air of the workplace, Med. Tr. Prom. Ekol. 7, 32–35 (1994).PubMedGoogle Scholar
  12. 12.
    V. I. Baranov and A. V. Pelevin, Effects of highly dispersed aerosol of silicon nitride modified by yttrium oxide, Med. Tr. Prom. Ekol. 7, 41–43 (1996).PubMedGoogle Scholar
  13. 13.
    E. P. Makeeva, V. I. Baranov, and G. I. Krivda, Determining the level of yttrium oxidecoated silicon nitride in the air of the work area. Gig. Tr. Prof. Zabol. 3, 39–41 (1991).PubMedGoogle Scholar
  14. 14.
    G. P. Drobot, V. S. Trubacheva, V. M. Egoshin, L. I. Kolesnikova, O. A. Smolentseva, and A. G. Mariev, The influence of the yttrium high-temperature superconducting ceramics on rats viscera, Med. Tr. Prom. Ekol. 2, 44–47 (1999).PubMedGoogle Scholar
  15. 15.
    O. V. Vidiakina, I. P. Zeldi, L. B. Kiseleva, and V. N. Samartseva, The status of tricarbonic acid cycle in liver and lungs of rats exposed to inhalation of yttrium ceramic dust, Med. Tr. Prom. Ekol. 7, 36–39 (2000).PubMedGoogle Scholar
  16. 16.
    D. O. Hryhorczuk, M. Moomey, A. Burton, et al., Urinary p-nitrophenol as a biomarker of household exposure to methyl parathion Environ. Health Perspect. 110 (Suppl. 6). 1041–1046 (2002).PubMedGoogle Scholar
  17. 17.
    H. A. Roels and J. P. Buchet, Determination of germanium in urine and its usefulness for biomonitoring of inhalation exposure to inorganic germanium in the occupational setting. J. Environ. Monit. 3, 67–73 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Usada, K. Kono, T. Dote, et al., Urinary biomarkers monitoring for experimental fluoride nephrotoxicity, Arch. Toxicol. 72, 104–109 (1998).CrossRefGoogle Scholar
  19. 19.
    K. Usuda, K. Kono, T. Dote, H. Nishiura, and T. Tagawa, Usefulness of the assessment of urinary enzyme leakage in monitoring acute fluoride nephrotoxicity, Arch. Toxicol. 73, 346–351 (1999).PubMedCrossRefGoogle Scholar
  20. 20.
    P. L. Drake, E. Krieg, A. W. Teass, and V. Vallyathan, Two assays for urinary N-acetyl-beta-d-glucosaminidase compared. Clin. Chem. 48, 1604–1605 (2002).PubMedGoogle Scholar
  21. 21.
    M. Horio and Y. Orita, Comparison of Jaffe rate assay and enzymatic method for the measurement of creatinine clearance. Nippon Jinzo Gakkai Shi 38, 296–299 (1996).PubMedGoogle Scholar
  22. 22.
    M. Thompson and J. N. Walsh, A Handbook of Inductively Coupled Plasma Spectrometry, Blackie and Son, Glasgow, pp. 16–36 (1983).Google Scholar
  23. 23.
    A. A. Ferrando, N. R. Green, K. W. Barnes, and B. Woodward. Microwave digestion preparation and ICP determination of boron in human plasma. Biol. Trace Element Res. 37, 17–25 (1993).Google Scholar
  24. 24.
    K. S. Subramanian and J. C. Meranger, Simultaneous determination of 20 elements in some human, kidney and liver autopsy samples by inductively-coupled plasma atomic emission spectrometry, Sci. Total Environ. 24, 147–157 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    Y. Ogawa, S. Suzuki, K. Naito, et al., Studies on the biological effects of yttrium: effects of repeated oral administration tests in rats, Jpn. J. Toxicol. Environ Health 40, 374–382 (1994).Google Scholar
  26. 26.
    S. Skalova, The diagnostic role of urinary N-acetyl-beta-d-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Med. 48, 75–80 (2005).Google Scholar
  27. 27.
    L. R. Willis, P. W. McCallum, and J. T. Higgins, Exaggerated natriuresis in the conscious spontaneously hypertensive rat, J. Lab. Clin. Med. 87, 265–272 (1976).PubMedGoogle Scholar
  28. 28.
    S. Hirano, N. Kodama, K. Shibata, and K. T. Suzuki, Metabolism and toxicity of intravenously injected yttrium chloride in rats, Toxicol. Appl. Pharmacol. 121, 224–232 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Dote, K. Kono, Y. Tanimura, H. Nagaie, and Y. Yoshida, Serum and urine fluoride level after fluoride administration in rats with experimental renal dysfunction, Trace Elements Med. 10, 112–114 (1993).Google Scholar
  30. 30.
    P. A. Luisier, P. Schulz, and P. Dick, The pharmacokinetics of lithium in normal humans: expected and unexpected observations in view of basic kinetic principles, Pharmacopsychiatry 20, 232–234 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    K. Usuda, K. Kono, Y. Orita, et al., Serum and urinary boron levels in rats after single administration of sodium tetraborate, Arch. Toxicol. 72, 468–474 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    National Institute for Occupational Safety and Health (NIOSH), NIOSH Pocket Guide to Chemical Hazards NIOSH Publication No. 2005-151: September 2005, National Institute for Occupational Safety and Health (NIOSH), Washington, DC (2003).Google Scholar
  33. 33.
    S. Hirano and K. T. Suzuki, Exposure, metabolism, and toxicity of rare earths and related compounds, Environ. Health Perspect. 104(Suppl. 1), 85–95 (1996).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Usuda, K. Kono, T. Watanabe, et al., Rehal function decline in aged workers enhances toxic effect of occupational chemicals, in Aging and Work, M. Kumashiro, ed., Taylor & Francis, London, pp. 291–299 (2003).Google Scholar
  35. 35.
    S. Takahashi, I. Takahashi, H. Sato, Y. Kubota, S. Yoshida, and Y. Muramatsu, Agerelated changes in the concentrations of major and trace elements in the brain of rats and mice, Biol. Trace Element Res. 80, 145–158 (2001).CrossRefGoogle Scholar
  36. 36.
    W. Ding, Z. Chai, P. Duan, W. Feng, and Q. Qian, Serum and urine chromium concentrations in elderly diabetics, Biol. Trace Element Res. 63, 231–237 (1998).Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Satsuki Hayashi
    • 1
  • Kan Usuda
    • 1
  • Go Mitsui
    • 1
  • Takahiro Shibutani
    • 1
  • Emi Dote
    • 1
  • Kazuya Adachi
    • 1
  • Michiko Fujihara
    • 1
  • Yukari Shimbo
    • 1
  • Wei Sun
    • 1
  • Rei Kono
    • 1
  • Hiroshi Tsuji
    • 1
  • Koichi Kono
    • 1
  1. 1.Division of Preventive and Social Medicine, Department of Hygiene and Public HealthOsaka Medical CollegeTakatsukiCity, OsakaJapan

Personalised recommendations