Biological Trace Element Research

, Volume 114, Issue 1–3, pp 163–173 | Cite as

Stimulation effect of lithium on the metabolic activity of liver tissue mitochondria measured by microcalorimetry

  • Hui-Rong Li
  • Cai-Qin Qin
  • Zong-Hai Zhang
  • Jun-Cheng Zhu
  • Yi Liu
Original Articles

Abstract

The effect of Li(I) on the metabolism of mitochondria isolated from Carassius auratus liver tissue was investigated by microcalorimetric method to provide evidence for mitochondria hypothesis of biporlar disorder (BPD) and to explore therapeutic mechanism of drug for treatment of BPD. Obvious stimulation induced by Li(I) on mitochondria metabolism was reflected by power-time (P-t) curves. The power-time curves of hepatic mitochondria metabolism without Li(I) could be divided into four parts: lag phase, active recovery phase, stationary phase, and decline phase. When Li(I) was added, the second heat peak occurred in a concentration-dependent sequence. Considering the first heat peak on the p-t curves, Li(I) in the range of therapeutic and lower concentration induced slight alterations in comparison with the characteristic heat peak observed in the control. However, Li(I) above the therapeutic concentration resulted in significant changes. Heat output increased with the concentration of Li(I), but the rate constant (k 2) and the maximum heat power (P max2) for the second heat peak reached maximum value in the range of therapeutic concentration. Mechanism of activation of mitoKatp was suggested and discussed.

Index Entries

Li(I) mitochondria microcalorimetry mitoKATP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ramprasad, Magnetic resonance spectroscopic imaging studies of lithium, Prog. Nucl. Magn. Reson. Spectrosc. 47, 111–121 (2005).CrossRefGoogle Scholar
  2. 2.
    G. N. Schrauzer, Occurrence, dietary intakes, nutritional essentiality, J. Am. Coll. Nutr. 21, 14–21 (2002).PubMedGoogle Scholar
  3. 3.
    M. Schou, in Lithium and the Cell: Pharmacology and Biochemistry, N. J. Birch, ed., Academic, London, pp. 1–6 (1991).Google Scholar
  4. 4.
    G. J. Moore, J. M. Bebchuk, I. B. Wilds, G. Chen, and H. K. Manji, Lithium-induced increase in human brain grey matter, Lancet 356, 1241–1242 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    C. J. Hough and D. M. Chuang, The mitochondrial hypothesis of bipolardisorder, Bipolar Disord. 2, 145–147 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    T. D. King, G. N. Bijur, and R. S. Jope, Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3 beta and attenuated by lithium, Brain Res. 919, 106–114 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    R. S. Jope and L. Song, K. Kolasa, Inositol trisphosphate, cyclic AMP, and cyclic GMP in rat brain regions after lithium and seizures, Biol. Psychiatry 31, 505–514 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Nordenberg, C. Panet, L. Wasserman, et al., The anti-proliferative effect of lithium chloride on melanoma cells and its reversion by myoinositol, Br. J. Cancer 55, 41–46 (1987).PubMedGoogle Scholar
  9. 9.
    S. Washizuka, A. Ikeda, and N. Kato, Possible relationship between mitochondrial DNA polymorphisms and lithium response in bipolar disorder, Int. J. Neuropsychopharmacol. 6, 421–424 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Iwamoto, M. Bundo, and T. Kato, Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis, Hum. Mol. Genet. 14, 241–253 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Murashita, T. Kato, T. Shioiri, T. Inubushi, and N. Kato, Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated P-31-MR spectroscopy. Psychol. Med. 30, 107–115 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Yildiz, C. M. Moore, G. S. Sachs, et al., Lithium-induced alterations in nucleoside triphosphate levels in human brain: a proton-decoupled (31)P magnetic resonance spectroscopy study, Psychiatry Res. Neuroimag. 138, 51–59 (2005).CrossRefGoogle Scholar
  13. 13.
    A. Moretti, A. Gorini, and R. F. Villa, Affective disorders, antidepressant drugs and brain Metabolism, Mol. Psychiatry 8, 773–785 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    R. B. Kemp, The application of heat conduction microcalorimetry to study the metabolism and pharmaceutical modulation of cultured mammalian cells, Thermochim. Acta 380, 229–244 (2001).CrossRefGoogle Scholar
  15. 15.
    J. Nedergaard, B. Canno, and O. Lindberg, Microcalorietry of isolated mammalian cells, Nature 267, 518–520 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    X. Q. Wang, C. L. Xie, and S. S. Qu, Microcalorimetric study of mitochondrial metabolism, Thermochim. Acta 176, 69–74 (1991).CrossRefGoogle Scholar
  17. 17.
    X. Li, Y. Liu, F. J. Deng, C. X. Wang, and S. S. Qu, Microcalorimetric studies of the toxic effect of sodium selenite on the mitochondria metabolism of Carassius auratus liver, Biol. Trace Element Res. 77, 261–270 (2000).CrossRefGoogle Scholar
  18. 18.
    K. Detlef, S. Marion, and D. Jurgen, Oxidative phosphorylation in myocardial mitochondria in situ: a calorimetric study on permeabilized cardiac muscle preparations Mol. Cell. Biochem. 74, 101–113 (1997).Google Scholar
  19. 19.
    P. J. Zhou, H. T. Zhou, Y. Liu, S. S. Qu, and Y. G. Zhu, Calorimetric and DSC study of mitochondria isolated from cytoplasmic male sterileline of rice, J. Therm. Anal. Calorim. 76, 1003–1013 (2004).CrossRefGoogle Scholar
  20. 20.
    L. Wadsö, A multi channel isothermal heat conduction calorimeter for cement hydration studies, International Congress of the Chemistry of Cement, Durban, South Africa (2003).Google Scholar
  21. 21.
    L. Wadso, F. Gomez, I. Sjoholm, and P. Rocculic, Effect of tissue wounding on the results from calorimetric measurements of vegetable respiration, Thermochim. Acta 422, 89–93 (2004).CrossRefGoogle Scholar
  22. 22.
    P. J. Zhou, H. T. Zhou, Y. Liu, S. S. Qu, and Y. G. Zhu, Study on the energy release of rice mitochondria under different conditions by means of microcalorimetry, J. Biochem. Biophys. Methods 48, 1–11 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    S. J. Richard, Li(I) and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes, Trends Pharmacol. Sci. 24, 441–443 (2003).CrossRefGoogle Scholar
  24. 24.
    R. P. Helen, Reports the ups and downs of Li(I), Nature 425, 118–120 (2003).CrossRefGoogle Scholar
  25. 25.
    S. J. H. Ashcroft and F. M. Ashcroft, Properties and functions of ATP-sensitive K-channels, Cell. Signal. 2, 197–214 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Inoue, ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature 352, 244–247 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    O. Jilkina, B. Kuzio, J. Gary, G. Clifford, D. L. Folmes, and H. J. Kong Sarcolemmal and mitochondrial effects of a KATP opener, P-1075, in “polarized” and “depolarized” Langendorff-perfused rat hearts, Biochim. Biophys. Acta 1617, 39–50 (2003).CrossRefGoogle Scholar
  28. 28.
    G. N. Bijur and R. S. Jope, Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria, Neuroreport 14, 2415–2419 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Agam and G. Shaltiel, Possible role of 3′(2′)-phosphoadenosine-5′-phosphate phosphatase in the etiology and therapy of bipolar disorder, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 27, 723–727 (2003).CrossRefGoogle Scholar
  30. 30.
    W. P. Tseng and S. Y. Lin-Shiau, Long-term lithium treatment prevents neurotoxic effects of beta-bungarotoxin in primary cultured neurons, J. Neurosci. Res. 69, 633–641 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    K. C. Thompson, Pharmaceutical application of calorimetric measurements in the new millennium, Thermochim. Acta 355, 83–87 (2000).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Hui-Rong Li
    • 1
  • Cai-Qin Qin
    • 2
  • Zong-Hai Zhang
    • 2
  • Jun-Cheng Zhu
    • 1
  • Yi Liu
    • 1
  1. 1.Department of Chemical Biology, College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople's Republic of China
  2. 2.Department of ChemistryXiaogan UniversityXiaoganPeople's Republic of China

Personalised recommendations