Skip to main content
Log in

Survey of strontium in mineral waters sold in Japan

Relations of strontium to other minerals and evaluation of mineral water as a possible dietary source of strontium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The concentrations of strontium, calcium, and magnesium in 33 brands of natural mineral waters commercially available in Japan were determined by inductively coupled plasma-atomic emission spectrometry. The geometric mean values were 94.4 μg/L for strontium, 19.1 mg/L for calcium, and 2.82 mg/L for magnesium. Wide confidence intervals of 1.96–4539 μg/L for strontium, 0.865–421 mg/L for calcium, and 0.064–123 mg/L for magnesium were observed. The significant linear relationships among the three elements over a wide distribution range suggest that the synchronized variations of these elements are regulated by the natural ecosystem and not from accidental contamination from human activities or exceptionally high natural sources. Using the results of multiple linear regression analysis, the strontium concentration can be predicted by that of calcium with the appropriate power function. The results of this study suggest that mineral water can be an important nutritional source of strontium. As trace elements imbalance is often found in older patients with chronic renal failure, we propose that close attention of trace elements intake from trendy foods or beverages is necessary to prevent this hidden problem of a rapidly aging society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Mineral Water Association of Japan, Statistic of Mineral Water, The Mineral Water Association of Japan, Tokyo (2005)

    Google Scholar 

  2. M. Krachler, W. Domej, and K. J. Irgolic, Concentrations of trace elements in osteoarthritic knee-joint effusions, Biol. Trace Element Res. 75, 253–263 (2000).

    Article  CAS  Google Scholar 

  3. M. Pi and L. D. Quarles, A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium, J. Bone Miner Res. 19, 862–869 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. J. Y. Reginster, N. Sarlet, E. Lejeune, and L. Leonori, Strontium ranelate: a new treatment for postmenopausal osteoporosis with a dual mode of action, Curr. Osteoporos. Rep. 3, 30–34 (2005).

    PubMed  Google Scholar 

  5. S. Ozgur, H. Sumer, and G. Kocoglu, Rickets and soil strontium, Arch. Dis. Child. 75, 524–526 (1996).

    PubMed  CAS  Google Scholar 

  6. E. B. Neufeld and A. L. Boskey, Strontium alters the complexed acidic phospholipid content of mineralizing tissues, Bone 15, 425–430 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. I. Schrooten, G. J. Behets, W. E. Cabrera, et al., Dose-dependent effects of strontium on bone of chronic renal failure rats, Kidney Int. 63, 927–935 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. M. E. De Broe and P. C. D'Haese, Strontium and osteomalacia in renal failure patients, Nephrol. Dial. Transplant. 18, 215–216 (2003).

    Article  PubMed  Google Scholar 

  9. S. Yafuji, Mineral water, Food Sci. 6, 22–43 (1995).

    Google Scholar 

  10. K. Usuda, K. Kono, T. Dote, et al., Log-normal distribution of the trace element data results from a mixture of stocahstic input and deterministic internal dynamics, Biol. Trace Element Res. 86, 45–54 (2002).

    Article  CAS  Google Scholar 

  11. A. Misund, B. Frengstad, U. Siewers, and C. Reimann, Variation of 66 elements in European bottled mineral waters, Sci. Total Environ. 243/244, 21–41 (1999).

    Article  CAS  Google Scholar 

  12. I. al-Saleh and I. al-Doush, Survey of trace elements in household and bottled drinking water samples collected in Riyadh, Saudi Arabia, Sci. Total Environ. 216, 181–192 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. F. W. Clark, The Data of Geochemistry, Department of the Interior, United States Geological Survey Bulletin 770, US Geological Survey, Washington, DC (1924).

    Google Scholar 

  14. P. Varo, E. Saari, A. Paaso, and P. Koivistoinen, Strontium in Finnish foods, J. Vitam. Nutr. Res. 52, 342–350 (1982).

    CAS  Google Scholar 

  15. J. R. Coughlin, Sources of human exposure: overview of water supplies as sources of boron, Biol. Trace Element Res. 66, 87–100 (1998).

    CAS  Google Scholar 

  16. R. W. Dabeka, H. B. Conacher, J. F. Lawrence, et al., Survey of bottled drinking waters sold in Canada for chlorate, bromide, bromate, lead, cadmium and other trace elements, Food. Addit. Contam. 19, 721–732 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. I. Schrooten, M. M. Elseviers, L. V. Lamberts, M. E. De Broe, and P. C. D'Haese, Increased serum strontium levels in dialysis patients: an epidemiological survey, Kidney Int. 56, 1886–1892 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. K. Usuda, K. Kono, T. Watanabe, et al., Renal function decline in aged workers enhances toxic effect of occupational chemicals, in Aging and Work, M. Kumashiro, (ed.), Taylor & Francis, Boston, pp. 291–299 (2003).

    Google Scholar 

  19. K. Usuda, K. Kono, T. Watanabe, et al., Hemodialyzability of ionizable fluoride in hemodialysis session, Sci. Total Environ. 297, 183–191 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. K. Usuda, K. Kono, K. Nishiura, et al., Boron diffusion across the dialysis membrane during hemodialysis, Miner. Electrolyte Metab. 23, 100–104 (1997).

    PubMed  CAS  Google Scholar 

  21. K. Usuda, K. Kono, and Y. Yoshida, The effect of hemodialysis upon serum levels of fluoride, Nephron 75, 175–178 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. J. P. Devogelaer and C. Nagant de Deuxchaisnes, Fluoride therapy of type I osteoporosis, Clin. Rheumatol. 14(Suppl. 3), 26–31 (1995).

    Article  PubMed  Google Scholar 

  23. C. Nagant de Deuxchaisnes, J. P. Devogelaer, and F. Stein, Fluoride treatment for osteoporosis, Lancet 336, 48–49 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. S. L. Volpe, L. J. Taper, and S. Meacham, The relationship between boron and magnesium status and bone mineral density in the human: a review, Magnesium Res. 6, 291–296 (1993).

    CAS  Google Scholar 

  25. F. H. Nielsen, Studies on the relationship between boron and magnesium which possibly affects the formation and maintenance of bones, Magnesium Trace Element 9, 61–69 (1990).

    CAS  Google Scholar 

  26. C. H. Turner, I. Owan, E. J. Brizendine, W. Zhang, M. E. Wilson, and A. J. Dunipace, High fluoride intakes cause osteomalacia and diminished bone strength in rats with renal deficiency, Bone 19, 595–601 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. K. Usuda, K. Kono, K. Iguchi, et al., Hemodialysis effect on serum boron level in the patients with long term hemodialysis, Sci. Total Environ. 191, 283–290 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. P. C. D'Haese, N. M. Couttenye, L. V. Lamberts, et al., Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of endstage renal failure patients, Clin. Chem. 45, 1548–1556 (1999).

    PubMed  Google Scholar 

  29. M. Gallieni, D. Brancaccio M. Cozzolino, and E. Sabbioni, Trace elements in renal failure: are they clinically important?, Nephrol. Dial. Transplant 11, 1232–1235 (1996).

    PubMed  CAS  Google Scholar 

  30. Statistics and Information Department, Minister's Secretariat, Ministry of Health, Labour and Welfare, Health and Welfare Statistics Association, Statistical Abstracts on Health and Welfare in Japan, Statistics and Information Department Minister's Secretariat, Ministry of Health, Labour and Welfare, Health and Welfare Statistics Association, Tokyo (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usuda, K., Kono, K., Dote, T. et al. Survey of strontium in mineral waters sold in Japan. Biol Trace Elem Res 112, 77–86 (2006). https://doi.org/10.1385/BTER:112:1:77

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:112:1:77

Index Entries

Navigation