Biological Trace Element Research

, Volume 111, Issue 1–3, pp 199–215 | Cite as

Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese

  • Keith M. Erikson
  • David C. Dorman
  • Vanessa Fitsanakis
  • Lawrence H. Lash
  • Michael Aschner
Original Articles


Neonatal rats were exposed to airborne manganese sulfate (MnSO4) (0, 0.05, 0.5, or 1.0 mg Mn/m3) during gestation (d 0–19) and postnatal days (PNDs) 1–18. On PND19, rats were killed, and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) and tyrosine hydroxylase (TH) protein levels, metallothionein (MT), TH and GS mRNA levels, and reduced and oxidized glutathione (GSH and GSSG, respectively) levels were determined for all five regions. Mn exposure (all three doses) significantly (p=0.0021) decreased GS protein levels in the cerebellum, and GS mRNA levels were significantly (p=0.0008) decreased in the striatum. Both the median and high dose of Mn significantly (p=0.0114) decreased MT mRNA in the striatum. Mn exposure had no effect on TH protein levels, but it significantly lowered TH mRNA levels in the olfactory bulb (p=0.0402) and in the striatum (p=0.0493). Mn eposure significantly lowered GSH levels at the median dose in the olfactory bulb (p=0.032) and at the median and high dose in the striatum (p=0.0346). Significantly elevated (p=0.0247) GSSG, which can be indicative of oxidative stress, was observed in the cerebellum of pups exposed to the high dose of Mn. These data reveal that alterations of oxidative stress biomarkers resulting from in utero and neonatal exposures of airborne Mn exist. Coupled with our previous study in which similarly exposed rats were allowed to recover from Mn exposure for 3 wk, it appears that many of these changes are reversible. It is important to note that the doses of Mn utilized represent levels that are a hundred- to a thousand-fold higher than the inhalation reference concentration set by the United States Environmental Protection Agency.

Index Entries

Rat manganese brain in utero glutathione glutamine synthetase metallothionein tyrosine hydroxylase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Dobson, S. Weber, D. C. Dorman, L. K. Lash, K. M. Erikson, and M. Aschner, Inhaled manganes sulfate and measures of oxidative stress in rat brain, Biol. Trace Elem. Res. 93, 113–126 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Weber, D. C. Dorman, L. H. Lash, K. Erikson, K. E. Vrana, and M. Aschner, Effects of manganese (Mn) on the developing rat brain: oxidative-stress related endpoints, Neurotoxicology 23, 169–175 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    K. M. Erikson, D. C. Dorman, L. H. Lash, A. W. Dobson, and M. Aschner, Airborne manganese exposure differentially affects endpoints of oxidative stress in an age and sex-dependent manner, Biol. Trace Elem. Res. 100, 49–62 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    K. M. Erikson, D. C. Dorman, L. H. Lash, and M. Aschner. Persistent alterations in biomarkers of, oxidative stress resulting from combined in utero and neonatal manganese inhalation, Biol. Trace Elem. Res. 104, 151–164 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    L. S. Hurley and C. L. Keen, Manganese in Trace Elements in Human Health and Animal Nutrition, E. Underwood and W. Mertz, eds., Academic, New York, pp. 185–223 (1987).Google Scholar
  6. 6.
    M. Aschner, K. M. Erikson, and D. C. Dorman, Manganese dosimetry: species differences and implications for neurotoxicity, Criti. Rev. Toxicol. 35, 1–32 (2005).CrossRefGoogle Scholar
  7. 7.
    ATSDR (Agency for Toxic Substances and Disease Registry). Toxiocological Profile for Manganese, US Department of Health And Human Services Public Health Service. available at (accessed September 2000).Google Scholar
  8. 8.
    D. Mergler, G. Huel, R. Bowler, et al., Nervous system dysfunction among workers with long-term exposure to manganese, Environ. Res. 64, 151–180 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    P. K. Pal, A. Samii, and D. B. Calne, Manganese neurotoxicity: a review of clinical features, imaging and pathology, Neurotoxicology 20, 227–238 (1999).PubMedGoogle Scholar
  10. 10.
    E. D. Pellizzari, C. A. Clayton, C. E. Rodes, et al. Particulate matter and manganese exposures in Indianapolis, Indiana, J. Exp. Anal. Environ. Epidemiol. 11, 423–440. (2001).CrossRefGoogle Scholar
  11. 11.
    M. Aschner, Manganese neurotoxicity and oxidative damage, in Metals and Oxidative Damage in Neurological Disorders, J. R. Connor, ed., Plenum, New York, pp. 77–93 (1997).Google Scholar
  12. 12.
    W. N. Sloot, J. Korf, J. F. Koster, L. E. A. DeWit, and J. B. P. Gramsbergen, Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo, Exp. Neurol. 138, 236–245 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Galvani, P. Fumagalli, and A. Santagostino, Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese, Eur. J. Pharmacol. 293, 377–383 (1995).PubMedCrossRefGoogle Scholar
  14. 14.
    E. P. Brouillet, L. Shinobu, U. McGarvey, F. Hochberg, and M. F. Beal. Manganese injection into the rat striatum produces excitotoxic lesionsby impairing energy metabolism, Exp. Neurol. 120, 89–94 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    C. E. Gavin, K. K. Gunter, and T. E. Gunter, Manganese and calcium transport in mitochondria: implications for manganese toxicity, Neurotoxicology 20, 445–453 (1999).PubMedGoogle Scholar
  16. 16.
    F. S. Archibald and C. Tyree, Manganese poisoning and the attack of trivalent manganese upon catecholamines, Arch. Biochem. Biophys. 256, 638–650 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    S. F. Ali, H. M. Duhart, G. D. Newport, G. W. Lipe, and W. Slikke, Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3, Neurodegeneration 4, 329–334 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Y. Chen, G. C. Tsao, Q. Zhao, and W. Zheng, Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe−S] containing enzymes, Toxicol. Appl. Pharmacol. 175, 160–168 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    K. K. Gunter, L. M. Miller, M. Aschner, et al., XANES spectroscopy: a promising tool for toxicology: a tutorial, Neurotoxicology 23, 127–146 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    D. HaMai, A. Campbell, and S. C. Bondy, Modulation of oxidative events by multivalent manganese complexes in brain tissue, Free Radical Biol. Med. 31, 763–768 (2001).CrossRefGoogle Scholar
  21. 21.
    A. Meister and M. E. Anderson, Gltathione, Annu. Rev. Biochem. 52, 711–760 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    M. E. Gegg, B. Beltran, S. Salas-Pino, et al., Differential effect of nitric oxide on GSH metabolism and mitochondrial function in astrocytes and neurons: implications for neuroprotection/neurodegeneration? J. Neurochem. 86, 228–237 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Sian, D. T. Dexter, A. J. Lees, et al., Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia, Ann. Neurol. 36, 356–361 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    M. S. Desole, G. Esposito, R. Mighelli, et al., Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese, Neuropharmacology 34, 289–295 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    G. K. Andrews, Regulation of metallothioneins gene expression, Prog. Food Nutr. Sci. 14, 193–258 (1990).PubMedGoogle Scholar
  26. 26.
    M. T. Dunn, T. L. Blalock, and R. J. Cousins, Metallothionein, Proc. Soc. Exp. Biol. Med. 185, 107–119 (1987).PubMedGoogle Scholar
  27. 27.
    D. H. Hamer, Metallothioneins, Annu. Rev. Biochem. 55, 913–951 (1986).PubMedGoogle Scholar
  28. 28.
    Y. Itano, S. Noji, E. Koyama, et al., Bacterial edotoxin-induced expression of metallothionein genes in rat brain, as revealed by in sit hybridization, Neurosci. Lett. 124, 13–16 (1991).PubMedCrossRefGoogle Scholar
  29. 29.
    H. Shiraga, R. F. Pfeiffer, and M. Ebadi, The effects of 6-hydroxydopamine and oxidative stress on the level of brain metallothionein, Neurochem. Int. 23, 561–566 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    J. W. Bauman, J. Liu, Y. P. Liu, and C. D. Klaassen, Increase in metallothionein produced by chemicals that induce oxidative stess, Toxicol. Appl. Pharmacol. 110, 347–354 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Martinez-Hernandez, K. P. Bell, and M. D. Norenberg, Glutamine synthetase: glial localization in the brain, Science 195, 1356–1358 (1977).PubMedCrossRefGoogle Scholar
  32. 32.
    C. J. Van den Berg and D. A. Garfinkel, A simulation study of brain compartments metabolism of glutamate and related substances in mouse brain, Biochem. J. 123, 211–218 (1971).PubMedGoogle Scholar
  33. 33.
    N. Westergaard, U. Sonneald, and A. Schousboe, Metabolic trafficking between neurons and astrocytes: the glutamate glutamine cycle revisited, Dev. Neurosci. 17, 203–211 (1995).PubMedGoogle Scholar
  34. 34.
    O. P. Ottersen, N. Zhang, and F. Walberg, Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum, Neuroscience 46, 519–534 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    E. R. Stadtman, Protein oxidation and aging, Science 257, 1220–1224 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    D. C. Dorman, A. M. McElveen, M. W. Marshall, et al., Tissue manganese concentrations in lactating rats and their offspring following combined in utero and lactation exposure to inhaled manganese sulfate, Toxicol. Sci. 84, 12–21 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    V. Barbu and F. Dautry, Northern blot normalization with a 28S rRNA oligonucleotide probe, Nucleic Acids Res. 17, 7115 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    M. W. Fariss and D. J. Reed, High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives, Methods Enzymol. 143, 101–109 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    L. H. Lash and J. J. Tokarz, Oxidative stress in isolated rat renal proximal and distal tubular cells, Am. J. Physiol., 259, F338-F347 (1990).Google Scholar
  40. 40.
    L. H. Lash and E. B. Woods, Cytotoxicity of alkylating agents in isolated rat kidney proxima and distal tubular cells, Arch. Biochem. Biophys. 286, 46–56 (1991).PubMedCrossRefGoogle Scholar
  41. 41.
    US EPA, Integrated Risk Information System (IRIS), Health ris assessment for manganese, Envirionmental Criteria and Assessment Office, Cincinnati, OH (1993).Google Scholar
  42. 42.
    C. L. Keen, J. G. Bell, and B. Lonnerdal, The, effect of age on manganese uptake and retention from milk and infant formulas in rats, J. Nutr. 116, 395–402, 1986.PubMedGoogle Scholar
  43. 43.
    U. Sonnewald, N. Westergaard, and A. Schousboe, Glutamate transport and metabolism in astrocytes, Glia 21, 56–63 (1997).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Hussain, W. Slikker, Jr., and S. F. Ali, Role of metallothionein and other antoxidants in scavenging superoxide radicals and their possible role in neuroprotection, Neurochem. Int. 29, 145–152 (1996).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Kondoh, Y. Inoue, S. Atagi, N. Futakawa, M. Higashimoto, and M. Sato. Specific induction of metallothionein synthesis by mitochondrial oxidative stress, Life Sci. 69, 2137–2146 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Keith M. Erikson
    • 1
  • David C. Dorman
    • 2
  • Vanessa Fitsanakis
    • 4
  • Lawrence H. Lash
    • 3
  • Michael Aschner
    • 4
    • 5
    • 6
  1. 1.Department of NutritionUniversity of North Carolina GreensboroGreensboro
  2. 2.CIIT Centers for Health ResearchResearch Triangle Park
  3. 3.Department of PharmacologyWayne State UniversityDetroit
  4. 4.Department of PediatricsVanderbilt University Medical CenterNashville
  5. 5.Department of PharmacologyVanderbilt University Medical CenterNashville
  6. 6.The Kennedy CenterVanderbilt University Medical CenterNashville

Personalised recommendations