A mild magnesium deprivation affects calcium excretion but not bone strength and shape, including changes induced by nickel deprivation, in the rat

  • Forrest H. Nielsen
Article

Abstract

An experiment was performed to determine the effect of a mild magnesium deprivation on calcium metabolism and bone composition, shape, and strength in rats, and whether nickel deprivation exacerbated or alleviated any changes caused by the magnesium deprivation. Weanling male rats were assigned to groups of 10 in a factorial arrangement, with variables being supplemental nickel at 0 and 1 mg/kg and magnesium at 250 and 500 mg/kg of diet. The basal diet contained about 30 ng Ni/g. Urine was collected for 24 h during wk 8 and 12, and rats were euthanized 13 wk after dietary treatments began. Mild magnesium deprivation decreased the urinary excretion of calcium and increased the tibia concentration of calcium but did not affect femur shape or strength (measured by a three-point bending test). Dietary nickel did not alter these effects of magnesium deficiency. Nickel deprivation increased the urinary excretion of phosphorus and the femur strength variables maximum force and moment of inertia. Strength differences might have been the result of changes in bone shape. Magnesium deprivation did not alter the effects of nickel deprivation on bone. The findings indicate that a mild magnesium deficiency affects calcium metabolism but that this does not markedly affect bone strength or shape, and these effects are not modified by dietary nickel. Also, nickel deprivation affects phosphorus metabolism and bone strength and shape; these effects apparently are not caused by changes in magnesium metabolism or utilization.

Index Entries

Magnesium nickel bone calcium minerals trace elements 

References

  1. 1.
    R. K. Rude, M. E. Kirchen, H. E. Gruber, A. A. Stasky, and M. H. Meyer, Magnesium deficiency induces bone loss in the rat, Miner. Electrolyte Metab. 24, 314–320 (1998).PubMedCrossRefGoogle Scholar
  2. 2.
    R. P. Heaney, Nutrition and risk of osteoporosis, in Osteoporosis, Vol. 1, R. Marcus, D. Feldman, and J Kelsey, eds., Academic, San Diego, pp. 669–700 (2001).Google Scholar
  3. 3.
    Food and Nutrition Board, Institute of Medicine, Magnesium, in Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride, National Academy Press, Washington DC, pp. 190–249 (1997).Google Scholar
  4. 4.
    S. Wallach, Effects of magnesium on skeletal metabolism, Magnesium Trace Elements 9, 1–14 (1990).Google Scholar
  5. 5.
    R. K. Rude, Magnesium deficiency: a possible risk factor for osteoporosis, in Nutritional Aspects of Osteoporosis, P. Burckhardt, B. Dawson-Hughes, and R. P. Heany, eds., Academic, San Diego, pp. 263–271 (2001).Google Scholar
  6. 6.
    R. K. Rude, H. E. Gruber, L. Y. Wei, A. Frausto, and B. G. Mills, Magnesium deficiency: effect on bone and mineral metabolism in the mouse, Calcif. Tissue Int. 72, 32–41 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    C. R. Reddy, J. W. Coburn, D. L., Hartenbower, et al., Studies on mechanisms of hypocalcemia of magnesium depletion, J. Clin. Invest. 52, 3000–3010 (1973).PubMedGoogle Scholar
  8. 8.
    J. Welsh, R. Schwartz, and L. Krook, Bone pathology and parathyroid gland activity in hypocalcemic magnesium-deficient chicks, J. Nutr. 111, 514–524 (1981).PubMedGoogle Scholar
  9. 9.
    S. Fatemi, E. Ryzen, J. Flores, D. B. Endres, and R. K. Rude, Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism, J. Clin. Endocrinol. Metab. 73, 1067–1072 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    J.-L. Riond, P. Hartmann, P. Steiner et al., Long-term excessive magnesium supplementation is deterious whereas suboptimal supply is beneficial for bones in rats, Magnesium Res. 13, 249–264 (2000).Google Scholar
  11. 11.
    E. Planells, P. Aranda, F. Peran, and J. Llopis, Changes in calcium and phosphorus absorption and retention during long-term magnesium deficiency in rats, Nutr. Res. 13, 691–699 (1993).CrossRefGoogle Scholar
  12. 12.
    S. T. McElroy, J. E. Link, R. P. Dowdy, K. R. Zinn, and M. R. Ellersieck, Influence of age and magnesium on calcium metabolism in rats, J. Nutr. 121, 492–497, (1991).PubMedGoogle Scholar
  13. 13.
    M. E. Shils, Experimental production of magnesium deficiency in man, Ann. NY Acad. Sci. 162, 847–855 (1969).PubMedCrossRefGoogle Scholar
  14. 14.
    F. H. Nielsen, The alteration of magnesium, calcium and phosphorus metabolism by dietary magnesium deprivation in postmenopausal women is not affected by dietary boron deprivation, Magnesium Res. 17, 197–210 (2004).Google Scholar
  15. 15.
    F. H. Nielsen and H. E. Sauberlich, Evidence of a possible requirement for nickel by the chick, Proc. Soc. Exp. Biol. Med. 134, 845–849 (1970).PubMedGoogle Scholar
  16. 16.
    M. Anke, N. Groppel, H. Kronemann, and M. Grün, Nickel: an essential element, in Nickel in the Human Environment, F. W. Sunderman, Jr., et al., eds., International Agency for Research on Cancer, Lyon, pp. 339–365 (1984).Google Scholar
  17. 17.
    M. Kirchgessner, J. Perth, and A. Schnegg, Mangelnde Ni-Versorgung und Ca−, Mg−, und P-Gehalte im Knochen wachsender Ratten, Arch. Tierernährung 30, 805–810 (1980).Google Scholar
  18. 18.
    F. H. Nielsen, T. J. Zimmerman, and T. R. Shuler, Interactions among nickel, copper, and iron in rats: growth, blood parameters, and organ wt/body wt ratios, Biol. Trace Element Res. 4, 125–143 (1982).Google Scholar
  19. 19.
    T. D. Crenshaw, E. R. Peo, Jr., A. J. Lewis, and B. D. Moser, Bone strength as a trait for assessing mineralization in swine: a critical review of techniques involved, J. Anim. Sci. 53, 827–835 (1981).Google Scholar
  20. 20.
    G. I. Stangl and M. Kirchgessner, Comparative effects of nickel and iron depletion on circulating thyroid hormone concentrations in rats, J. Anim. Physiol. Anim. Nutr. 79, 18–26 (1998).CrossRefGoogle Scholar
  21. 21.
    F. H. Nielsen, Effect of form of iron on nickel deprivation in the rat: plasma and liver lipids, Biol. Trace Element Res. 2, 199–210 (1980).Google Scholar
  22. 22.
    G. I. Stangl and M. Kirchgessner, Nickel deficiency alters liver lipid metabolism in rats, J. Nutr. 126, 2466–2473 (1996).PubMedGoogle Scholar
  23. 23.
    M. Kirchgessner and A. Schnegg, Biochemical and physiological effects of nickel deficiency, in Nickel in the Environment, J. O. Nriagu, ed., Wiley, New York, pp. 635–652 (1980).Google Scholar
  24. 24.
    F. H. Nielsen, E. O. Uthus, R. A. Poellot, and T. R. Shuler, Dietary vitamin B12, sulfur amino acids, and odd-chain fatty acids the response of rats to nickel deprivation, Biol. Trace Element Res. 37, 1–15 (1993).Google Scholar
  25. 25.
    F. H. Nielsen, E. A. Poellot, and E. O. Uthus, Managenese deprivation affects response to nickel deprivation, J. Trace Elements Exp. Med. 7, 167–185 (1995).Google Scholar
  26. 26.
    F. H. Nielsen, T. R. Shuler, T. G. McLeod, and T. J. Zimmerman, Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in the rat, J. Nutr. 114, 1280–1288 (1984).PubMedGoogle Scholar
  27. 27.
    S. W. Golf, U. Schaefer, V. Graef, H. Temme, N. Katz, and L. Róka, Deficiency of magnesium and overiectomy. Effects on biochemical parameters in cells, plasma and urine of the rat, in Magnesium: A Relevant Ion, B. Lasserre and J. Durlach, eds., John Libbey, London, pp. 343–352 (1991).Google Scholar
  28. 28.
    I. Mak, B. F. Dickens, A. M. Komarov, T. L. Wagner, T. M. Phillips, and M. B. Weglicki, Activation of neutrophil and loss of plasma glutathione during Mg-deficiency: modulation by nitric oxide synthase inhibition, Mol. Cell. Biochem. 176, 35–39 (1997).PubMedCrossRefGoogle Scholar
  29. 29.
    A. E. Bergstra, A. G. Lemmens, and A. C. Beynen, Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats, J. Nutr. 123, 1320–1327 (1993).PubMedGoogle Scholar
  30. 30.
    F. H. Nielsen, D. R. Myron, S. H. Givand, and D. A. Ollerich, Nickel deficiency and nickel-rhodium interaction in chicks, J. Nutr. 105, 1607–1619 (1975).PubMedGoogle Scholar
  31. 31.
    K. Yokoi, E. O. Uthus, and F. H. Nielsen, Nickel deficiency diminishes sperm quantity and movement in rats. Biol. Trance Element Res. 93, 141–153 (2003).CrossRefGoogle Scholar
  32. 32.
    J. W. Spears, E. E. Hatfield, and R. M. Forbes, Nickel-copper interrelationship in the rat, Proc. Soc. Exp. Biol. Med. 156, 140–143 (1977).PubMedGoogle Scholar
  33. 33.
    J. W. Spear and E. E. Hatfield, Interaction between nickel and copper in the rat, Biol. Trace Element Res. 7, 181–193 (1985).CrossRefGoogle Scholar
  34. 34.
    A. Schnegg and M. Kirchgessner, Zur Interaktion von Nickel mit Eisem, Kupfer und Zink, Arch. Tierernährung 26, 543–549 (1976).Google Scholar
  35. 35.
    A. Jiménez, E. Planells, P. Aranda, M. Sánchez-Viñas, and J. Llopis, Changes in bioavailability and tissue distribution of copper caused by magnesium deficiency in rats, J. Agric. Food Chem. 45, 4023–4027 (1997).CrossRefGoogle Scholar
  36. 36.
    G. I. Stangl and M. Kirchgessner, Effect of nickel deficiency on fatty acid composition of total lipids and individual phospholipids in brain and erythrocytes of rats, Nutr. Res. 17, 137–147 (1997).CrossRefGoogle Scholar
  37. 37.
    S. Reinwald, Y. Li, T. Moriguchi, N. Salem, Jr., and B. A. Watkins, Repletion with (n−3) fatty acids reverses bone structural deficits in (n−3)-deficient rats, J. Nutr. 134, 388–394 (2004).PubMedGoogle Scholar
  38. 38.
    W. B. Bowler, A. Littlewood-Evans, G. Bilbe, J. A. Gallagher, and C. J. Dixon, P2Y2 receptors are expressed by human osteoclasts of giant cell tumor but do not mediate ATP-induced bone resorption, Bone, 22, 195–200 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Forrest H. Nielsen
    • 1
  1. 1.Agricultural Research Service, Grand Forks Human Nutrition Research CenterUS Department of AgricultureGrand Forks

Personalised recommendations