Advertisement

Biological Trace Element Research

, Volume 108, Issue 1–3, pp 115–126 | Cite as

Induction of DNA damage by free radicals generated either by organic or inorganic arsenic (AsIII, MMAIII, and DMAIII) in cultures of B and T lymphocytes

  • Saul Espinosa Gómez
  • Luz Maria del Razo
  • Jose Luis Muñoz Sanchez
Original Articles

Abstract

The aim of this work is based in the premise that inorganic arsenic (AsIII) and trivalentmethylated metabolites monomethylarsonous (MMAIII) and dimethylarsinous (DMAIII) participate in DNA damage through the generation of reactive oxygen species (ROS). We have utilized two lymphoblastic lines, Raji (B cells) and Jurkat (T cells), which were treated with the trivalent arsenic species (dose: 0–100 μM) and analyzed by two assays (comet assay and flow cytometry) in the determination of DNA damage and ROS effects in vivo. The results showed that the damage to the DNA and the generation of ROS are different in both cellular lines with respect to the dose of organic arsenic, and the order of damage is MMAIII>DMAIII>AsIII. This fact suggests that the DMAIII is not always the more cytotoxic intermediary xenobiotic, as has already been reported in another study.

Index Entries

DNA damage trivalent areenic reactive oxygen species (ROS) comet assay dihydrorhodamine 123 (DHR123) flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Brown, A. Foster, and J. Ostergren, Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective, Proc. Natl. Acad. Sci. USA 96, 3388–3395 (1999).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Azcue and J. Nriagu, Arsenic: historical perspectives, in Arsemic in the Environment. Part I: Cycling and Characterization, J. O. Nriagu,., Wiley, New York, pp. 1–15 (1994).Google Scholar
  3. 3.
    M. Bigg, D. Kalman, L. Moore, et al., Relationship of urinary arsenic intake estimates and a biomarker of effect, bladder cell microunuclei, Mutat. Res. 386, 185–195 (1997).CrossRefGoogle Scholar
  4. 4.
    R. A. Eisler, Review of arsenic hazards to plants and animals with emphasis on tishery and wildlife resources, in Arsenic in the Environment. Part II: Human Health and Ecosystem, J. O. Nriagu, ed., Wiley, New York, pp. 185–260 (1994).Google Scholar
  5. 5.
    W. Morton and D. Dunnette, Health effects of environmental arsenic, in Arsenic in the Environment. Part II: Human Health and Ecosystem, J. O. Nriagu, ed., Wiley, New York, pp. 17–34 (1994).Google Scholar
  6. 6.
    M. Moore, K. Harrington-Brock, and C. Doerr, Relative genotoxic potency of arsenic and its methylated metabolites, Mutat. Res. 386, 279–290 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Healy, E. Casarez, F. Ayala-Fierro, F. et al., Enzymatic methylation of arsenic compounds, Toxicol. Appl. Pharmacol. 148, 65–70 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Petrick, F. Ayala-Fierro, W. Cullen, et al., Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes, Toxicol. Appl. Pharmacol. 163, 203–207 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Brown, K. Kitchin, and M. George, Dimethilarsenic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis, Teratog. Carcinog. Mutag. 17, 71–84 (1997).CrossRefGoogle Scholar
  10. 10.
    S. Ahmad, K. Kitchin, and W. Cullen, Arsenic species that cause release of iron from ferritin and generation of activated oxygen, Arch. Biochem. Biophys. 282(2), 195–202 (2000).CrossRefGoogle Scholar
  11. 11.
    I. Csanaky, B. Németi, and Z. Gregus, Dose-dependent biotransformation of arsenite in rats—not S-adenosylmethionine depletion impairs arsenic methylation at high dose, Toxicology 183, 77–91 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Nesnow, B. Roop, G. Lambert, et al., DNA damage by methylated trivalent arsenicals is mediated by reactive oxygen species, Chem. Res. Toxicol. 15, 1627–1634 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Yamanaka, W. Hasegawa, R. Sawmura, et al., Cellular response to oxidative damage in lung induced by administration of dimethylarsinic acid a major metabolite of inorganic arsenics, in mice. Toxicol. Appl. Pharmacol. 108, 205–213 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Liu, M. Kadiiska, Y. Liu, et al., Stress-related in mice treated with inorganic arsenicals, Toxicol. Sci. 61, 314–320 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Kitchin, Recent advances in arsenic carcinogenesis: modes of action animal model systems, and methylated arsenic metabolites, Toxicol. Appl. Pharmacol. 172, 249–261 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Singh, M. McCoy, R. Tice, et al., A simple technique for quantitation of low levels of DNA damage in individual celle, Exp. Cell Res. 175, 184–191 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Tice, E. Agurell, D. Anderson, et al., Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutag. 35, 206–221 (2000).CrossRefGoogle Scholar
  18. 18.
    V. Goossens, J. Grooten, K. Vos, et al., Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity, Proc. Natl. Acad. Sci. USA 92, 8115–8119 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Buxser, G. Sawada, and T. Raub, Analytical and numerical techniques for evaluation of free radical damage in cultured cell using imaging cytometry and fluorescent indicators, Methods Enzymol. 300, 256–275 (1999).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Collins, S. Duthie, and U. Dobson, Direct enzymic detection of endogenous oxidative damage in human lymphocyte DNA, Carcinogenesis 14(9), 1733–1735 (1993).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Rasmussen and D. Menzel, Variation in arsenic-induced sister chromatid exchange in human lymphocytes and lymphoblastoid cell lines, Mutat. Res 386, 299–306 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Rickwood and J. Harris, Cell Biology Essential Techniques, Wiley, New York, pp. 38–66 (1996).Google Scholar
  23. 23.
    S. Duthie and P. McMillan, Uracil misincorporation in human DNA detected using single cell gel electrophoresis, Carcinogenesis 8, 1709–1714 (1997).CrossRefGoogle Scholar
  24. 24.
    C. Helma and M. Uhl, A public domain image-analysis program for the single-cell-gelelectrophoresis (comet) assay, Mutat. Res. 466, 9–15 (2000).PubMedGoogle Scholar
  25. 25.
    M. Mass, A. Tennant, B. Roop, et al., Methylated trivalent arsenic ppecies are genotoxic, Chem. Res. Toxicol. 14, 355–361 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Tuck, S. Smith, and L. Larcom, Chronic lymphocytic leukemia lymphocytes lack the capacity to repair UVC-induced lesions, Mutat. Res. 459, 73–80 (2000).PubMedGoogle Scholar
  27. 27.
    Y. Ito and D. Lipschitz, Assay of intracellular hydrogen peroxide generation in activated individual neutrophils by flow cytometry, In Methods in Oxidants and Antioxidants: Ultrastructure and Molecular Biology Protocols, D. Armstrong, ed., Humana, Totowa, NJ (2002).Google Scholar
  28. 28.
    F. Antunes, E. Cadenas, and U. Brunk, Apoptosis induced by exposure to a low steadystate concentration of H2O2 is a consequence of lysosomal rupture, Biochem. J. 356, 549–555 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Ferlini, R. Amelio, and G. Scambia, Apoptosis induced by ionizing radiation, in Subcellular Biochemistry, Vol. 36, Phospholipid Metabolism in Apoptosis, P. J. Quinn and V. E. Kagan, eds., Academic/Plenum, New York, (2002).Google Scholar
  30. 30.
    M. Styblo, L. Vega, D. Germolec, et al. Metabolism and toxicity of arsenicals in cultured cell, in Arsenic Exposure and Health Effects, W. Chappell, C. D. Aberharthy, and R. L. Calderon, eds., Elsevier Science, Amsterdam, pp. 311–323 (1999).Google Scholar
  31. 31.
    T. Schwerdtle, I. Walter, I. Mackiw, et al., Induction of oxidative DNA damage and its trivalent and pentavalent methylated metabolites in cultured cells and isolated DNA, Carcinogenesis 24(5), 967–974 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    W. Cullen, B. Mc Bride, and J. Reglinski, The reduction of trimethylarsine oxide to trimethylarsine by thiols: a mechanistic model for the biological reduction of arsenicals, J. Inorg. Biochem. 21, 45–60 (1984).CrossRefGoogle Scholar
  33. 33.
    H. Yamauchi and B. Fowler, Toxicity and metabolism of inorganic and methylated arsenicals, in Arsenic in the Environment. Part II: Human Health and Ecosystem, J. O. Nriagu, ed., Wiley, New York, pp. 35–91 (1994).Google Scholar
  34. 34.
    M. Gorby, Arsenic in human medicine, in Arsenic in the Enviroment. Part I. Cyding and Characterization, J. O. Nriagu, ed., Wiley, New York, pp. 1–53 (1994).Google Scholar
  35. 35.
    P. Simeonova, S. Wang, W. Toriuma, et al., Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation. Cancer Res. 60, 3445–3453 (2000).PubMedGoogle Scholar
  36. 36.
    G. Jiang, Z. Gon, X. Li, et al., Interaction of trivalent arsenicals with metallothionein, Chem. Res. Toxicol. 16, 873–880 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    Y. Shiobara, Y. Ogra, and K. Suzuki, Animal species difference in the uptake of dimethylarsinous acid (DMAIII) by red blood cells, Chem. Res. Toxicol. 14, 1446–1452 (2001).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Sakurai, W. Qu, M. Sakurai, et al., A major human arsenic metabolite, dimethylarsinic acid requires reduced glutathione to induce apoptosis, Chem. Res. Toxicol. 15, 629–637 (2001).CrossRefGoogle Scholar
  39. 39.
    K. Yamanaka, H. Hayashi, K. Kato, et al., Involvement of preferential formation of apurinic/apirimidinic site in dimethylarsenic-induced DNA strand breaks and DNA-protein crosslinks in cultured alveolar epithelial cell, Biochem. Biophys. Res. Commun. 207(1), 244–249 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Saul Espinosa Gómez
    • 1
  • Luz Maria del Razo
    • 2
  • Jose Luis Muñoz Sanchez
    • 2
  1. 1.Department of BiochemistryNational School of Biological Sciences (ENCB)IPN. Carpio y Plan de Ayala S/NMexico
  2. 2.Department of ToxicologyCenter for Research of Advanced Studies (Cinvestav)Col. San Pedro ZacatencoMexico

Personalised recommendations