Advertisement

Biological Trace Element Research

, Volume 108, Issue 1–3, pp 1–15 | Cite as

Selenium levels in blood of Upper Silesian population

Evidence of suboptimal selenium status in a significant percentage of the population
  • Barbara Kłapcińska
  • Stanisław Poprzęcki
  • Alojzy Danch
  • Andrzej Sobczak
  • Katarzyna Kempa
Original Articles

Abstract

The selenium status and the relationship of whole-blood selenium and plasma homocysteine are reported for healthy human subjects living in Upper Silesia. A total of 1063 individuals (627 male and 436 female) examined for whole-blood selenium were subdivided into six groups according to age; the youngest included adolescents (n=143) aged 10–15 yr, and the oldest were centenarians (n=132). The mean Se content was relatively low (62.5±18.4 μg/L), and it tended to be higher in men (65.9±17.2 μg/L) than in women (57.5±18.9 μg/L). Selenium levels appeared to be age dependent, as the highest values were observed in young and middle-age adults (21–40 yr), whereas they were significantly lower in adolescents and in the elderly. In more than 40% of apparently healthy adults (aged 21–69 yr), the Se concentration was within the range 60–80 μg/L (i.e., below the lower limit of the nutritional adequacy range [80 μg/L]). A significant inverse correlation between whole-blood selenium and plasma total homocysteine was detected in a smaller population sample of middle-aged and elderly persons (n=204).

Index Entries

Whole-blood selenium plasma total homocysteine Upper Silesian population the elderly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. M. Brown and J. R. Arthur, Selenium, selenoproteins and human health: a review, Public Health Nutr. 4(2B), 593–599 (2001).PubMedGoogle Scholar
  2. 2.
    A. Van Gossum and J. Nève, Trace element deficiency and toxicity, Curr. Opin. Clin. Nutr. Metab. Care 1, 487–489 (1998).CrossRefGoogle Scholar
  3. 3.
    J. Nève, Physiological and nutritional importance of selenium, Experientia 47, 187–193 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    G. N. Schrauzer, Anticancerogenic effects of selenium, Cell Mol Life Sci. 57, 1864–1873 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Koehrle, R. Brigelius-Flohé, A. Böck, et al., Selenium in biology: facts and medical perspectives, Biol. Chem. 381, 849–864 (2000).CrossRefGoogle Scholar
  6. 6.
    M. A. Beck, O. A. Levander, and J. Handy, Selenium deficiency and viral infection, J. Nutr. 133(5 Suppl. 1), 1463S-1467S (2003).PubMedGoogle Scholar
  7. 7.
    M. P. Rayman, The importance of selenium to human health, Lancet 356, 233–241 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Ferencik and L. Ebringer, Modulatory effects of selenium and zinc on the immune system, Folia Microbiol. (Praha) 48, 417–426 (2003).Google Scholar
  9. 9.
    R. C. McKenzie, T. S. Rafferty, and G. J. Beckett, Selenium: an essential element for immune function, Immunol. Today 19, 342–345 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Chen and M. J. Berry, Selenium and selenoproteins in the brain and brain diseases J. Neurochem. 86, 1–12 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    L. A. Daniels, Selenium: does selenium status have health outcomes beyond overt deficiency? Med. J. Australia 180, 373–374 (2004).PubMedGoogle Scholar
  12. 12.
    E. M. Alissa, S. M. Bahijri, and G. A. Ferns, The controversy surrounding selenium and cardiovascular disease: a review of the evidence, Med. Sci. Monit. 9, RA9-RA18 (2003).PubMedGoogle Scholar
  13. 13.
    R. Clarke and D. Stansbie, Assessment of homocysteine as a cardiovascular risk factor in clinical practice, Ann. Clin. Biochem. 38, 624–632 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    S. R. Lentz, Homocysteine and cardiovascular physiology, in Homocysteine in Health and Disease (R. Carmel and D. W. Jacobsen, eds.), Cambridge University Press, Cambridge, pp. 441–450 (2001).Google Scholar
  15. 15.
    S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease, N. Engl. J. Med. 346, 476–483 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    O. Nygård, S. E. Vollset, H. Refsum et al., Total homocysteine and cardiovascular disease. J. Intern. Med. 246, 425–454 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Brattström, D. E. Wilcken, J. Ohrvik, et al., Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis, Circulation 98, 2520–2526 (1998).PubMedGoogle Scholar
  18. 18.
    S. E. Vollset, H. Refsum, O. Nygård, et al., Lifestyle factors associated with hyperhomocysteinemia, in Homocysteine in Health and Disease (R. Carmel, D. W. Jacobsen, eds.), Cambridge University Press, Cambridge, pp. 341–355 (2001).Google Scholar
  19. 19.
    O. Nygård, H. Refsum, P. M. Ueland, et al., Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study, Am. J. Clin. Nutr. 67, 263–270 (1998).PubMedGoogle Scholar
  20. 20.
    A. J. Sobczak, The effects of tobacco smoke on the homocysteine level—a risk factor of atherosclerosis, Addict. Biol. 8, 147–158 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    K. M. Riggs, A. Spiro, 3rd, K. Tucker, et al., Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study, Am. J. Clin. Nutr. 63, 306–314 (1996).PubMedGoogle Scholar
  22. 22.
    E. Hernanz, C. Fernández-Vivancos, J. J. Montiel, et al., Changes in the intracellular homocysteine and glutathione content associated with aging, Life Sci. 67, 1317–1324 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    P. F. Jacques, R. Kalmbach, P. J. Bagley, et al., The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetradyrofolate reductase gene, J. Nutr. 132, 283–288 (2002).PubMedGoogle Scholar
  24. 24.
    B. J. Venn, A. M. Grant, C. D. Thomson, et al., Selenium supplements do not increase plasma total homocysteine concentrations in men and women, J. Nutr. 133, 418–420 (2003).PubMedGoogle Scholar
  25. 25.
    C. D. Davis and E. O. Uthus, Does dietary selenium affect plasma homocysteine concentrations in humans?, J. Nutr. 133, 2392 (2003).PubMedGoogle Scholar
  26. 26.
    S. Gonzáles, J. M. Huerta, J. Álvarez-Uria, et al., Serum selenium is associated with plasma homocysteine concentrations in elderly humans, J. Nutr. 134, 1736–1740 (2004).Google Scholar
  27. 27.
    E. O. Uthus, K. Yokoi, and C. D. Davis, Selenium deficiency in Fischer-344 rats decreases plasma and tissue homocysteine concentrations and alters plasma homocysteine and cysteine redox status, J. Nutr. 132, 1122–1128 (2002).PubMedGoogle Scholar
  28. 28.
    C. D. Davis and E. O. Uthus, Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats, J. Nutr. 133, 2907–2914 (2003).PubMedGoogle Scholar
  29. 29.
    W. Wąsowicz and B. A. Zachara, Selenium concentration in the blood and urine of a healthy Polish suppopulation, J. Clin. Chem. Clin. Biochem. 25, 409–412 (1987).PubMedGoogle Scholar
  30. 30.
    W. Wąsowicz, J. Gromadzińska, K. Szram, et al., Selenium, zinc, and copper concentration in the blood and milk of lacting women, Biol. Trace Element Res. 79, 221–233 (2001).CrossRefGoogle Scholar
  31. 31.
    W. Wąsowicz, J. Gromadzińska, K. Rydzyński, et al., Selenium status of low-selenium area residents: Polish experience, Toxicol. Lett. 137, 95–101 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    E. Hać, J. Krechniak, and M. Szyszko, Selenium levels in human plasma and hair in northern Poland, Biol. Trace Element Res. 85, 277–285 (2002).CrossRefGoogle Scholar
  33. 33.
    A. Luty-Frąckiewicz, Z. Jethon, and J. Januszewska, Effect of smoking and alcohol consumption on the serum selenium level of Lower Silesian population, Sci. Total Environ. 285, 89–95 (2002).PubMedCrossRefGoogle Scholar
  34. 34.
    B. Kłapcińska, A. Danch, S. Poprzęcki, et al., Selenium concentration in the blood of young healthy subpopulation in Northern Silesia, Pol. J. Environ. Stud. 7, 378–379 (1998).Google Scholar
  35. 35.
    B. Kłapcińska, J. Derejczyk, K. Wieczorowska-Tobis, et al., Antioxidant defense in centenarians (a preliminary study), Acta Biochim. Polon. 47, 281–292 (2000).PubMedGoogle Scholar
  36. 36.
    A. Danch and M. Dróżdż, A simplified technique of fluorometric selenium assay in biological materials, Diagn. Lab. 32, 529–534 (1996) (in Polish).Google Scholar
  37. 37.
    P. B. Young, A. M. Molloy, J. M. Scott, et al., A rapid high performance liquid chromatographic method for determination of homocysteine in porcine tissue, J. Liquid Chromatogr. 17, 3553–3561 (1994).CrossRefGoogle Scholar
  38. 38.
    C. M. Pfeiffer, D. Twite, J. Shih, et al., Method comparison for total plasma homocysteine between the Abbott IMx analyzer and an HPLC assay with internal standardization, Clin. Chem. 45, 152–153 (1999).PubMedGoogle Scholar
  39. 39.
    C. D. Thomson, Assessment of requirements for selenium and adequacy of selenium status: a review, Eur. J. Clin. Nutr. 58, 391–402 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    L. D. Koller and J. H. Exon, The two faces of selenium—deficiency and toxicity—are similar in animals and man, Can. J. Vet. 50, 297–306 (1986).Google Scholar
  41. 41.
    C. J. Bates, C. W. Thane, A. Prentice, et al., Selenium status and associated factors in a British National Diet and Nutrition Survey: young people aged 4–18y, Eur. J. Clin. Nutr. 56, 873–881 (2002).PubMedCrossRefGoogle Scholar
  42. 42.
    J. L. Valentine, H. K. Kang, B. Faraji, et al., Selenium status and age effects, in Selenium in Biology and Medicine (A. Wendel, ed.), Springer-Verlag, Berlin, pp. 286–293 (1989).Google Scholar
  43. 43.
    D. Campbell, V. W. Bunker, A. J. Thomas, et al., Selenium and vitamin E status of healthy and institutionalized elderly subjects: analysis of plasma, erythrocytes and platelets, Br. J. Nutr. 62, 221–227 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    L. Savarino, D. Granchi, G. Ciapetti, et al., Serum concentrations of zinc and selenium in elderly people: results in healthy nonagenarians/centenarians, Exp. Gerontol. 36, 327–339 (2001).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Smith, M. P. Chang, and L. C. Medeiros, Generational differences in selenium status of women, Biol. Trace Element Res. 75, 157–165 (2000).CrossRefGoogle Scholar
  46. 46.
    A. Madaric, J. Kadrabova, and E. Ginter, Selenium concentration in plasma and erythrocytes in a healthy Slovak population, J. Trace Elements Electrolytes Health Dis. 8, 43–47 (1994).Google Scholar
  47. 47.
    B. Szteke and W. Ręczajska, Arsenic and selenium in food and fodder, in Arsenic and Selenium in the Environment. Ecological and Analytical Problems. Polish Academy of Sciences, Warsaw, pp. 82–93 (1994).Google Scholar
  48. 48.
    Z. Marzec, Cereal products as a source of selenium in Polish food rations, Rocz. Panstw. Zakl. Hig. 53, 377–383 (2002) (in Polish).PubMedGoogle Scholar
  49. 49.
    K. Szurlej and B. A. Zachara, Selenium content in food articles and food consumed by the adult inhabitants of the Kujawsko-Pomorski region. A pilot study, i Arsenic and Selenium in the Environment. Ecological and Analytical Problems, Polish Academy of Sciences, Warsaw, pp. 104–109 (1994).Google Scholar
  50. 50.
    Z. Marzec, Selenium intake with reproduced canteen and home-made diets in Poland. in Arsenic and Selenium in the Environment. Ecological and Analytical Problems Polish Academy of Sciences, Warsaw, pp. 100–103 (1994).Google Scholar
  51. 51.
    G. F. Combs, Selenium in global food systems, Br. J. Nutr. 85, 517–547 (2001).PubMedCrossRefGoogle Scholar
  52. 52.
    J. R. Robinson, M. F. Robinson, O. A. Levander, et al., Urinary excretion of selenium by New Zealand and North American human subjects on different intakes, Am. J. Clin. Nutr. 41, 1023–1031 (1985).PubMedGoogle Scholar
  53. 53.
    J. Nève, Selenium as a risk factor for cardiovascular diseases, J. Cardiovasc. Risk 3, 42–47 (1996).PubMedCrossRefGoogle Scholar
  54. 54.
    A. F. Kardinaal, F. J. Kok, L. Kohmeier, et al., Association between toenail selenium and risk of acute myocardial infarction in European men. The EURAMIC Study. European Antioxidant Myocardial Infarction and Breast Cancer, Am. J. Epidemiol. 145, 373–379 (1997).PubMedGoogle Scholar
  55. 55.
    P. Suadicani, H. O. Hein, and F. Gyntelberg, Serum selenium concentration and risk of ischemic heart disease in a prospective cohort study of 3000 males, Atherosclerosis 96, 33–42 (1992).PubMedCrossRefGoogle Scholar
  56. 56.
    M. A. Mansoor, C. Bergmark, S. J. Haswell, et al., Correlation between plasma total homocysteine and copper in patients with peripheral vascular disease, Clin. Chem. 46, 385–391 (2000).PubMedGoogle Scholar
  57. 57.
    M. F. McCarthy, Oxidants downstream from superoxide inhibit nitric oxide production by vascular endothelium—a key role for selenium-dependent enzymes in vascular health, Med. Hypotheses 53, 315–325 (1999).CrossRefGoogle Scholar
  58. 58.
    A. Sobczak, W. Wardas, W. Zielinska-Danch, et al., The influence of smoking on plasma homocysteine and cysteine levels in passive and active smokers, Clin. Chem. Lab. Med. 42, 408–414 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Barbara Kłapcińska
    • 1
  • Stanisław Poprzęcki
    • 1
  • Alojzy Danch
    • 2
  • Andrzej Sobczak
    • 3
  • Katarzyna Kempa
    • 1
  1. 1.Department of Physiological and Medical SciencesAcademy of Physical EducationKatowicePoland
  2. 2.Department of Experimental and Clinical BiochemistryMedical University of SilesiaKatowicePoland
  3. 3.Department of General and Analytical Chemistry, Faculty of PharmacyMedical University of SilesiaSosnowiecPoland

Personalised recommendations