Biological Trace Element Research

, Volume 107, Issue 1, pp 61–71 | Cite as

Determination of selenium in Libyan food items using pseudocyclic instrumental neutron activation analysis

  • U. M. El-Ghawi
  • A. A. Al-Sadeq
  • M. M. Bejey
  • M. B. Alamin
Original Articles


Cyclic and pseudocyclic instrumental neutron activation analysis (INAA) has been used to determine the Se content of 40 Libyan food items. The selected samples include different varieties of local and imported foods such as wheat and barley products (bran and flours), rice, bread, almond, peanuts, vegetables as bean and peas, tea, coffee, sugar, and commonly used spices such as red and black paper, curry, cumin, mixture of spices, thyme, coriander, and fenugreek. Both conventional and anticoincidence γ-ray spectrometry techniques have been employed. Pseudocyclic INAA in conjunction with anticoincidence counting has been found to provide the most reliable results. The precision of the method has been significantly improved by recycling the samples up to three times. The accuracy has been evaluated by analyzing a number of certified reference materials of varied Se levels. The detection limit has been found to vary between 26 and 90 ppb Se depending on the sample composition. The range of daily dietary intake has been calculated as 13–44 μg of Se per day.

Index Entries

Selenium food cereals average daily dietary intakes of Se neutron activation analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Schwarz and C. M. Foltz, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration, J. Am. Chem. Soc. 79, 3292–3293 (1957).CrossRefGoogle Scholar
  2. 2.
    M. F. Robinson and C. D. Thomson, The role of selenium in the diet, Nutr. Abstr. Rev. 53, 3 (1983).Google Scholar
  3. 3.
    J. T. Rotruck, A. L. Pope, H. E. Ganther, A. S. Swanson, D. G. Hafeman, and W. G. Hoekstra, Science 179, 588 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. S. Kim, and J. Milner, Molecular targets for selenium in cancer prevention, Nutr. Cancer 40(1), 50–54 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    P. C. Raich, J. Lu, H. J. Thompson, and G. F. Combs, Selenium in cancer prevention: clinical issues and implications, Cancer Invest. 19(5), 540–553 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    G. F. Combs, Considering the mechanism of cancer prevention by Selenium, Nutr. Cancer Prev. 492, 107–117 (2001).Google Scholar
  7. 7.
    J. Lu, H. Pei, C. Ip, D. J. Lisk, H. Ganthern, and H. J. Thompson, Effect of an aqueous extract of selenium-enriched garlic on in vitro markers and in vivo efficacy in cancer prevention. Carcinogenesis 17(9), 1903–1907 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    M. J. Gartrell, J. C. Craun, D. S. Podrebarac, and E. L. Gunderson, J. Assoc. Off. Anal. Chem. 68, 862 (1985).PubMedGoogle Scholar
  9. 9.
    R. A. Goyer, Am. J. Clin. Nutr. 61, 646S (1995).PubMedGoogle Scholar
  10. 10.
    U. M. El-Ghawi, S. M. Al-Fakhri, A. A. Al-Sadeq, M. M. Bejey, and K. K. Doubali, Multielemental analysis of Libyan arable soils by INAA, in 3rd African Research Reactors Conference, Rabat, Morocco (2003).Google Scholar
  11. 11.
    D. E. Ryan, D. C. Stuart, and A. Chattopadhyay, Rapid multielement neutron activation analysis using a SLOWPOKE reactor, Anal. Chim. Acta 100, 87 (1978).CrossRefGoogle Scholar
  12. 12.
    J. Holzbecher, D. E. Raya, and A. Chatt, SLOWPOKE epi-cadmium neutrons flux in activation analysis of trace elements, Can. J. Spectrosc. 30, 67 (1985).Google Scholar
  13. 13.
    D. E. Ryan, J. Holzbecher, and A. Chatt, Analysis for trace elements with a SLOWPOKE reactor, Anal. Chim. Acta 200, 89 (1987).CrossRefGoogle Scholar
  14. 14.
    G. Erdtmann, Neutron Activation Tables, Volume 6, Verlag Chemie, Weinheim (1976).Google Scholar
  15. 15.
    U. M. El-Ghawi, A. A. Al-Sadeq, M. M. Bejey, and F. Abutweirat, Epithermal neutron activation analysis and its application in Tajura Research Center, unpublished.Google Scholar
  16. 16.
    L. A. Currie, Anal. Chem. 40, 586 (1968).CrossRefGoogle Scholar
  17. 17.
    U. S. Food and Nutrition Board, Recommended Dietary Allowance, 9th rev. ed., National Academy of Sciences, Washington, DC (1980).Google Scholar
  18. 18.
    J. J. Fardy, G. D. McOrist, and Y. J. Farrar, J. Radioanal. Nucl. Chem. Articles 133, 397 (1989).CrossRefGoogle Scholar
  19. 19.
    H. J. Robberecht and H. A. Deeltra, Z. Lebebsm. Unters. Forsch. 178, 266 (1984).CrossRefGoogle Scholar
  20. 20.
    H. J. Robberecht, P. Hendrix, R. Van Cauwenbergh, and H. A. Deelstra, Z. Lebebsm. Unters. Forsch. 199, 251 (1994).CrossRefGoogle Scholar
  21. 21.
    M. Cresta, M. Allegrini, E. Casadei, M. Gallorini, E. Lanzola, and G. B. Fanatta, Food Nutr. 2, 8 (1976).Google Scholar
  22. 22.
    D. I. Favaro, V. A. Maihara, M. J. Armelin, M. B. Vasconcellos, and S. M. Cozzolino, J. Radioanal. Nucl. Chem. Articles 181, 385 (1994).CrossRefGoogle Scholar
  23. 23.
    H. Benemariya, H. Robberecht, and H. Deelstra, Sci. Total. Environ 136, 49 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    J. N. Thompson, P. Erdody, and D. C. Smith, J. Nutr. 105, 274 (1975).PubMedGoogle Scholar
  25. 25.
    L. S. McDowell, Determination of total and bioavailable selenium in food by neutron activation, M.Sc. thesis, Dalhousie University (1987).Google Scholar
  26. 26.
    S. Laiyan, L. Fengying, S. Rongwei, and Z. Houxi, J. Radioanal. Nucl. Chem. Articles 151, 277 (1991).CrossRefGoogle Scholar
  27. 27.
    M. Lamand, J. C. Tressol, and J. Bellanger, J. Trace Elements Electrolytes Health Dis. 8, 195 (1994).Google Scholar
  28. 28.
    O. Oster and W. Prellwitz, Biol. Trace Element Res. 20, 1 (1989).CrossRefGoogle Scholar
  29. 29.
    M. S. Bratakos, T. F. Zafiropoulos, P. A. Siskos, and P. V. Ioannou, J. Food Sci. 52, 817 (1987).CrossRefGoogle Scholar
  30. 30.
    A. Stacchini, E. Coni, M. Baldin, E. Beccaloni, and S. Caroli, J. Trace Elements Electrolytes Health Dis. 3, 193 (1989).Google Scholar
  31. 31.
    G. V. Iyengar, H. Kawamura, R. M. Parr, F. K. Miah, J. Wang, H. S. Dang, H. Djojosubroto, S. Cho, P. Akher, E. S. Natera and M. S. Nguy, Dietary intake of essential minor and trace elements from Asian diets, Food Nutr. Bull, 23(3), 124–128 (2002).PubMedGoogle Scholar
  32. 32.
    C. J. Wyatt, J. M. Melendez, N. Acuna, and A. Rascon, Nutr. Res. 16, 949 (1996).CrossRefGoogle Scholar
  33. 33.
    R. H. de Vos, W. van Dokkum, P. D. Olthof, J. K. Quirijns, T. Muys, and J. M. van der Poll, Food Chem. Toxicol. 22, 11 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Bibow, H. M. Meltzer, H. H. Mundal, I. T. Paulsen, and H. Holm, J. Trace Elements Electrolytes Health Dis. 7, 171 (1993).Google Scholar
  35. 35.
    I. H. Qureshi, A. Mannan, J. H. Zaidi, M. Arif, and N. Khalid, Int. J. Environ Anal. Chem. 38, 565 (1990).Google Scholar
  36. 36.
    S. M. Liu, C. Chung, J. T. Chuang, C. F. Wang, and N. K. Aras, J. Radioanal. Nucl. Chem. Articles 150, 397 (1991).CrossRefGoogle Scholar
  37. 37.
    T. Mumcu, I. Gokmen, A. Gokmen, R. M. Parr, and N. K. Aras, J. Radioanal. Nucl. Chem. Articles 124, 289 (1988).CrossRefGoogle Scholar
  38. 38.
    U. Ari, M. Volkan, and N. K. Aras, J. Agric. Food Chem. 39, 2180 (1991).CrossRefGoogle Scholar
  39. 39.
    J. A. Pennington, B. E. Young, D. B. Wilson, R. D. Johnson, and J. E. Vanderveen, J. Am. Diet. Assoc. 86, 876 (1986).PubMedGoogle Scholar
  40. 40.
    J. A. Pennington, B. E. Young, and D. B. Wilson, J. Am. Diet. Assoc. 89, 659 (1989).PubMedGoogle Scholar
  41. 41.
    J. A. Pennington, and B. E. Young, J. Am. Diet. Assoc. 91, 179 (1991).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • U. M. El-Ghawi
    • 1
  • A. A. Al-Sadeq
    • 1
  • M. M. Bejey
    • 1
  • M. B. Alamin
    • 1
  1. 1.Tajura Research CenterTripoliLibya

Personalised recommendations