Biological Trace Element Research

, Volume 106, Issue 3, pp 253–264 | Cite as

Metallothionein-like proteins and zinc-copper interaction in the hindgut of Porcellio scaber (crustacea: Isopoda) exposed to zinc

  • N. Žnidarŝiĉ
  • M. Tuŝek-Žnidariĉ
  • I. Falnoga
  • J. Ŝĉanĉar
  • J. Ŝtrus
Original Articles

Abstract

Metallothioneins (MTs) are ubiquitous low-molecular-weight metalbinding proteins, with a variety of functions in metal metabolism ascribed to them. Among terrestrial invertebrates, MTs have been studied in nematodes, insects, snails, and earthworms. The aim of this study was the characterization of MT-like proteins in the terrestrial isopod crustacean Porcellio scaber in order to analyze their probable role in the metaboliss of copper (Cu) and zinc (Zn). Dietary Zn supplementation (793 μg Zn/g dry food, 6 d) was applied to stimulate MT synthesis. After separation of the hindgut postmicrosomic supernatant (cytosol) of Zn-exposed animals by gel filtration on a Sephadex G-75 column, a Cu- and Zn-containing peak was detected in the position of V c/Vo≈2, where MTs are expected to elute. Rechromatography of these fractions by size-exclusion chromatography-high-performance liquid chromatography revealed that the 215-nm absorbance peak coincided with the absorbance peak of the rabbit MT II standard. These low-molecular-weight Cu- and Zn-binding compounds, detected in the cytosol of the hindgut cells in Zn-exposed P. scaber. are considered to be Cu, Zn-MT-like proteins. To our knowledge, this is the first report on the characterization of MT-like proteins in isopod crustaceans. These results also indicate that both Zn and Cu dynamics in P. scaber hindgut are affected at the given dietary Zn supplementation and that MT-like proteins are involved in this Zn-Cu interaction.

Index Entries

Metallothionein copper zinc Porcellio scaber hindgut digestive system Crustacea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Stillman, Metallothioneins, Coord. Chem. Rev. 144, 461–511 (1995).CrossRefGoogle Scholar
  2. 2.
    Y. Kojima, P. A. Binz, and J. H. R. Kägi, Nomenclature of metallothionein: proposal for a revision, in Metallothionein IV, C. Klaassen, ed., Birkhauser-Verlag, Basel, pp. 3–6 (1999).Google Scholar
  3. 3.
    B. L. Vallee, The function of metallothionein, Neurochem. Int. 27(1), 23–33 (1995).PubMedCrossRefGoogle Scholar
  4. 4.
    R. D. Palmiter, The elusive function of metallothioneins, PNAS 95(15), 8428–8430 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    S. R. Davis and R. J. Cousins, Metallothionein expression in animals: a physiological perspective on function, J. Nutr. 130, 1085–1088 (2000).PubMedGoogle Scholar
  6. 6.
    W. Maret, The function of zinc metallothionein: a link between cellular zinc and redox state, J. Nutr. 130, 1455S-1458S (2000).PubMedGoogle Scholar
  7. 7.
    M. Vašák and D. W. Hasler, Metallothioneins: new functional and structural insights, Curr. Opin. Chem. Biol. 4(2), 177–183 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    S. R. Stürzenbaum, P. Kille, and A. J. Morgan, The identification, cloning and characterization of earthworm metallothionein, FEBS Lett. 431, 437–442 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Gruber, S. Stürzenbaum, P. Gehring, et al., Isolation and characterization of a self-sufficient one-domain protein (Cd)-Metallothionein from Eisenia foetida, Eur. J. Biochem. 267, 573–582 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    P. J. Hensbergen, M. H. Donker, M. J. M. van Velzen, et al., Primary structure of a cadmium-induced metallothionein from the insect Orchesella cincta (Collembola), Eur. J. Biochem. 259, 197–203 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Dallinger, B. Berger, C. Gruber, P. Hunziker, and S. Stürzenbaum, Metallothioneins in terrestrial invertebrates: structural aspects, biological significance and implications for their use as biomarkers, Cell. Mol. Biol. 46(2), 331–346 (2000).PubMedGoogle Scholar
  12. 12.
    M. Brouwer, D. R. Winge, and W. R. Gray, Structural and functional diversity of copper-metallothioneins from the American lobster Homarus americanus, J. Inorg. Biochem. 35(4), 289–303 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Brouwer and T. Brouwer-Hoexum, Interaction of copper-metallothionein from the Americam lobster, Homarus americanus, with glutathione, Arch. Biochem. Biophys. 290(1), 207–213 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Brouwer and T. Brouwer-Hoexum, Glutathione-mediated transfer of copper (I) into American lobster Apohemocyanin, Biochemistry 31, 4096–4102 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Brouwer, D. Schlenk, A. H. Ringwood, and T. Hoexum-Brouwer, Metal-specific induction of metallothionein isoforms in the blue crab Callinectes sapidus in response to single- and mixed-metal exposure, Arch. Biochem. Biophys. 294(2), 461–468 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    K. L. Pedersen, S. N. Pedersen, P. Hojrup, et al., Purification and characterization of a cadmium-induced metallothionein from the shore crab Carcinus maenas (L.), Biochem. J. 297, 609–614 (1994).PubMedGoogle Scholar
  17. 17.
    R. A. Syring, T. Hoexum-Brouwer, and M. Brouwer, Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallotioneins from the blue crab Callinectes sapidus, Comp. Biochem. Physiol. C 125, 325–332 (2000).CrossRefGoogle Scholar
  18. 18.
    D. W. Engel, Metal regulation and molting in the blue crab, Callinectes sapidus: copper, zinc, and metallothionein, Biol. Bull. 172, 69–82 (1987).CrossRefGoogle Scholar
  19. 19.
    D. W. Engel and M. Brouwer, Short-term metallotionein and copper changes in blue crab at ecdysis, Biol. Bull. 180, 447–452 (1991).CrossRefGoogle Scholar
  20. 20.
    M. Brouwer, R. Syring, and T. Hoexum-Brouwer, Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin, J. Inorg. Biochem. 88, 228–239 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Dallinger and F. Prosi, Fractionation and identification of heavy metals in hepatopancreas of terrestrial isopods: evidence of lysosomal accumulation and absence of cadmium-thionein, in Proceedings of 3rd European Congress on Entomology, H. H. Velthuis, ed., Nederlandse Entomologische Vereniging, Amsterdam, p. 328 (1986).Google Scholar
  22. 22.
    H. E. van Capelleveen, Ecotoxicity of heavy metals for terrestrial isopods, PhD thesis, Free University Press, Amsterdam, pp. 79–89 (1987).Google Scholar
  23. 23.
    M. H. Donker, P. Koevoets, J. A. C. Verkleij, and N. M. Van Straalen, Metal binding compounds in hepatopancreas and heamolymph of Porcellio scaber (Isopoda), Comp. Biochem. Physiol. 97C(1), 119–126 (1990).Google Scholar
  24. 24.
    M. P. Menard, C. C. McCormick, and R. J. Cousins, Regulation of intestinal metallothionein biosynthesis in rats by dietary zinc, J. Nutr. 111(8), 1353–1361 (1981).PubMedGoogle Scholar
  25. 25.
    S. R. Davis and R. J. Cousins, Metallothionein expression in animals: A physiological perspective on function, J. Nutr. 130, 1085–1088 (2000).PubMedGoogle Scholar
  26. 26.
    N. F. Krebs, Overview of zinc absorption and excretion in the human gastrointestinal tract, J. Nutr. 130, 1374S-1377S (2000).PubMedGoogle Scholar
  27. 27.
    C. A. C. Hames and S. P. Hopkin, The structure and function of the digestive system of terrestrial isopods, J. Zool. Lond 217, 599–627 (1989).CrossRefGoogle Scholar
  28. 28.
    J. Štrus, D. Drobne, and P. Ličar, Comparative anatomy and functional aspects of the digestive system in amphibious and terrestrial isopods (Isopoda: Oniscidea), in Terrestrial Isopod Biology, M. A. Alikhan, ed., Balkema, Rotterdam, pp. 15–23 (1995).Google Scholar
  29. 29.
    M. Dermelj, A. Vakselj, V. Ravnik, and B. Smodiš, Applicability of carbamate extraction to radiochemical separation and determination of cadmium, cobalt, copper and zinc in various biosphere samples, Radiochem. Radioanal. Lett. 41, 149–160 (1979).Google Scholar
  30. 30.
    D. Drobne and S. P. Hopkin, The toxicity of zinc to terrestrial isopods in a “standard” laboratory test, Ecotoxicol. Environ Safety 31, 1–6 (1995).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Bibič, D. Drobne, J. Štrus, and A. R. Byrne, Assimilation of zinc by Porcellio scaber (Isopoda, Crustacea) exposed to zinc, Bull. Environ. Contam. Toxicol. 58, 814–821 (1997).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Zidar, Zinc and cadmium toxicity testing on test organism (Porcellio scaber, Isopoda, Crustacea), MSc thesis, University of Ljubljana (1998).Google Scholar
  33. 33.
    R. Eisler, Zinc hazards to fish, wildlife, and invertebrates: a synoptic review, Biological Report 10, US Department of the Interior Fish and Wildlife Service, Washington, DC (1993).Google Scholar
  34. 34.
    M. H. Martin, E. M. Duncan, and P. J. Coughtrey, The distribution of heavy metals in a contaminated woodland ecosystem, Environ. Poll. B 3, 147–157 (1982).CrossRefGoogle Scholar
  35. 35.
    W. N. Beyer, G. W. Miller, and E. J. Cromartie, Contamination of the O2 soil horizon by zinc smelting and its effect on woodlouse survival, J. Environ. Qual. 13, 2, 247–251 (1984).CrossRefGoogle Scholar
  36. 36.
    G. Bengtsson and L. Tranvik, Critical metal concentrations for forest soil invertebrates, Water Air Soil Pollut. 47, 381–417 (1989).CrossRefGoogle Scholar
  37. 37.
    P. Zidar, D. Drobne, and J. Štrus, Determination of moult stages of Porcellio scaber (Isopoda) for routine use, Crustaceana 71(6), 646–654 (1998).CrossRefGoogle Scholar
  38. 38.
    P. Zidar, D. Drobne, J. Štrus, and A. Blejec, Intake and assimilation of zinc, copper, and cadmium in the terrestrial isopod Porcellio scaber Latr. (Crustacea, Isopoda), Bull. Environ. Contam. Toxicol. 70, 1028–1035 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    W. Wieser, Über die Häutung von Procellio scaber Latr., Verhandlungen der Deutschen Zoologischen Gesellschaft, Kiel, Leipzig, Germany, pp. 178–195 (1964).Google Scholar
  40. 40.
    I. Bremner and P. M. May, Systemic interactions of zinc, in Zinc in Human Biology, C. F. Mills, ed., Springer-Verlag, Berlin, pp. 95–108 (1989).Google Scholar
  41. 41.
    V. Yuzbasiyan-Gurkan, A. Grider, T. Nostrant, R. J. Cousins, and G. J. Brewer, Treatment of Wilson's disease with zinc: X. Intestinal metallothionein induction, J. Lab. Clin. Med. 120(3), 380–386 (1992).PubMedGoogle Scholar
  42. 42.
    G. J. Brewer, Zinc acetate for the treatment of Wilson's disease, Expert Opin. Pharmacother 2(9), 1473–1477 (2001).PubMedCrossRefGoogle Scholar
  43. 43.
    P. G. Reeves and K. L. Rossow, Zinc- and/or cadmium-induced intestinal metallothionein and copper metabolism in adult rats, J. Nutr. Biochem. 7, 128–134 (1996).CrossRefGoogle Scholar
  44. 44.
    P. G. Reeves, Copper metabolism in metallothionein-null mice fed a high-zinc diet, J. Nutr. Biochem. 9, 598–601 (1998).CrossRefGoogle Scholar
  45. 45.
    P. G. Reeves, M. Briske-Anderson, and L. A. Johnson, Physiologic concentrations of zinc affect the kinetics of copper uptake and transport in the human intestinal cell model, Caco-2, J. Nutr. 128, 1794–1801 (1998).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • N. Žnidarŝiĉ
    • 1
  • M. Tuŝek-Žnidariĉ
    • 1
    • 2
  • I. Falnoga
    • 2
  • J. Ŝĉanĉar
    • 2
  • J. Ŝtrus
    • 1
  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Environmental SciencesJ. Stefan InstituteLjubljanaSlovenia

Personalised recommendations