Biological Trace Element Research

, Volume 104, Issue 2, pp 165–172 | Cite as

Effect of selenium on expression of selenoproteins in mouse fibrosarcoma cells

  • Edyta Reszka
  • Jolanta Gromadzinska
  • Malgorzata Stanczyk
  • Wojciech Wasowicz
Original Articles


Selenium (Se), an essential trace element, is incorporated into seleno-proteins as selenocysteine using insertion machinery, including UGA codon and selenocysteine insertion sequence (SECIS) element in the 3 untranslated region (3′-UTR) of mRNA. To assess the biological effects of tumor cells exposed to the elevated, but nontoxic Se level on glutathione peroxidase (GP×1 [cellularar] and GP×3 [extracellular]) thioredoxin reductase (TrxR), and selenoprotein P (SeP) mRNA expression, we introduced a semiquantitative reverse transcription-polymerase chain reaction technique for each selenoprotein transcript using β-actin as a reference housekeeping gene in mouse fibroblasts (WEHI 164). Cell lines were cultured with 1.0, 2.5, and 5.0 ng of Se in 1 mL of medium for 3 and 7 d, apart from the control cell line with standard medium. It was found that Se exerts a statistically significant (p<0.05) effect only on GP×3 mRNA, referred to as the optical density (OD) ratio (GP×3/ β-actin). Moreover, the lowest Se level affected GP×3 mRNA expression more strongly than its highest concentrations. In an in vitro model applied in this study, GP×3 gene expression is most specific for Se supplementation.

Index Entries

Selenium selenoproteins RT-PCR fibrosarcoma cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. A. Levander, Clinical consequences of low selenium intake and its relationship to vitamin E, Ann. NY Acad. Sci. 393, 70–82 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    J. M. Fox, Selenium: nutritional implications and prospects for therapeutic medicine, Methods Find. Exp. Clin. Pharmacol. 14, 275–287 (1992).PubMedGoogle Scholar
  3. 3.
    D. Behne and A. Kyriakopoulos, Mammalian selenium-containing proteins, Annu. Rev. Nutr. 21, 453–473 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Fleming, A. Ghose, and P. R. Harrison, Molecular mechanisms of cancer prevention by selenium compounds, Nutr. Cancer 40, 42–49 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    J. E. Hesketh and S. Villette, Intracellular trafficking of micronutrients: from gene regulation to nutrient requirements, Proc. Nutr. Soc. 61, 405–414 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    D. L. Hatfield and V. N. Gladyshev, How selenium has altered our understanding of the genetic code, Mol. Cell. Biol. 22, 3565–3576 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    R. R. Jameson, B. A. Carlson, M. Butz, K. Exer, D. L. Hatfield, and A. M. Diamond, Selenium influences the turnover of selenocysteine tRNA[Ser]Sec in Chinese hamster ovary cells. J. Nutr. 132, 1830–1835 (2002).PubMedGoogle Scholar
  8. 8.
    S. Weiss-Sachdev and R. A. Sunde, Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and-4 in rat liver, Biochem. J. 357, 851–858 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    R. D. Baker, S. S. Baker, K. LaRosa, C. Whitney, and P. E. Newburger, Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B, Arch. Biochem. Biophys. 304, 53–57 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    M. B. Hansen, S. E. Nielsen, and K. Berg, Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill, J. Immunol. Methods 119, 203–210 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    S. El-Mouatassim, P. Guerin, and Y. Menezo, Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of a maturation, Mol. Hum. Reprod. 5, 720–725 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Waters, S. Safe, and K. W. Gaido, Differential gene expression in response to metoxychlor and estradiol through ERα, ERβ, and AR in reproductive tissues of female mice, Toxicol. Sci. 63, 47–56 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Nishimura, K. Matsumiya, A. Tsujimura, M. Koga, M. Kitamura, and A. Okuyama, Association of selenoprotein P with testosterone production in cultured, Leydig cells, Arch. Androl. 47, 67–76 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Kawai, T. Ota, F. Suzuki, and M. Tatsuka, Molecular cloning of mouse thoredoxin reductase, Gene 242, 321–330 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Brigelius-Flohe, Tissue-specific functions of individual glutathione peroxidases, Free Radical Biol. Med. 27, 951–965 (1999).CrossRefGoogle Scholar
  16. 16.
    V. N. Gladyshev, V. M. Factor, F. Housseau, and D. L. Hatfield, Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells, Biochem. Biophys. Res. Commun. 251, 488–493 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    D. B. Mansur, H. Hao, V. N. Gladyshev, et al., Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cells, Biochem. Pharmacol. 60, 489–497 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    K. B. Hadley and R. A. Sunde, Selenium regulation of thioredoxin reductase activity and mRNA levels in rat liver, J. Nutr. Biochem. 12, 693–702 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    C. D. Hough, K. R. Cho, A. B. Zonderman, D. R. Schwartz, and P. J. Morin, Coordinately up-regulated genes in ovarian cancer, Cancer, Res. 61, 3869–3876 (2001).Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Edyta Reszka
    • 1
  • Jolanta Gromadzinska
    • 1
  • Malgorzata Stanczyk
    • 1
  • Wojciech Wasowicz
    • 1
  1. 1.Department of Toxicology and CarcinogenesisNofer Institute of Occupational MedicineLodzPoland

Personalised recommendations