Biological Trace Element Research

, Volume 103, Issue 1, pp 59–68 | Cite as

Sodium selenite stimulates neurobehavior and neurochemical activities in rats

  • Abdullah Shafique Ahmad
  • Suhaila Zia
  • Iqbal Sayeed
  • Mubeen Ahmad Ansari
  • Muzamil Ahmad
  • Sofiyan Salim
  • Seema Yousuf
  • Fakhrul Islam
Original Articles


The effect of 0.05, 0.1, and 0.2 mg sodium selenite/kg body weight ip on the activities of neurobehavioral, acetyl cholinesterase, monoamine oxidase, and the content of dopamine and its metabolites in circadian rhythm centers of male Wistar rats was studied after 7 d of treatment. The results show an appreciable increase in locomotion, stereo-events, distance traveled, and average speed at the dose of 0.1 and 0.2 mg sodium selenite/kg. The data have shown hyperactivity of animals with various doses of sodium selenite, and it was significant and dose-dependent after 3 d of treatment. The activity of acetylcholinesterase (AChE) was inhibited dose dependently, and it was significant in preoptic area with 0.1 or 0.2 mg sodium selenite/kg. Conversely, in the posterior hypothalamus its activity was significantly elevated with the dose of 0.2 mg sodium selenite/kg, but its alteration in brain stem was not significant. Monoamine oxidase (MAO) activity was increased in preoptic area with the dose of 0.1 mg sodium selenite/kg, but its alteration in posterior hypothalamus and brain stem was not significant. The content of dopamine (DA), 3,4-dihydroxyphenyl acetic acid (DOPAC), and homovanilic acid (HVA) was elevated dose dependently and it was significant with the doss of 0.1 and 0.2 mg sodium selenite/kg, but the content of DOPAC and HVA in posterior hypothalamus was not significant with the dose of 0.1 mg sodium selenite/kg.

Index Entries

Sodium selenite dopamine DOPAC HVA AChE MAO circadian rhythm centers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Burk, D. G. Brown, R. J. Seely, and C. C. Scaief, Influence of dietary and injected selenium on whole-blody retention, route of excretion, and tissue retention of 75SeO3 2-in the rat. J. Nutr. 102, 1049–1055 (1972).PubMedGoogle Scholar
  2. 2.
    D. Behne, H. Hilmert, S. Scheid, H. Gessner, and W. Elger, Evidence for specific selenium target tissues and new biologically important selenoproteins, Biochim. Biophys. Acta 966, 12–21 (1988).PubMedGoogle Scholar
  3. 3.
    S. Djuic, O. Jozanov-Stankov, M. Mandic, M. Demajo, and M. M. Vrvic, Selenium content and distribution in rat tissues irradiated with gamma rays. Biol. Trace Elem. Res. 33, 197–204 (1992).Google Scholar
  4. 4.
    R. F. Burk, Selenium, in Nutrition Reviews: Present Knowledge Nutrition, Nutrition Foundation Inc., Washington, DC, 5th edition, p 519 (1984).Google Scholar
  5. 5.
    B. Lee, J. J. Hirst, and D. W. Walker, Prostaglandin D synthase in the prenatal voine brain and effects of its inhibition with selenium chloride on fetal sleep/wake activity in utero, J. Neurosci. 22, 5679–5686 (2002).PubMedGoogle Scholar
  6. 6.
    J. T. Coyle and S. H. Snyder, Catecholamines, in Basic Neurochemistry, G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds. Little, Brown and Co., Boston, MA (1981)Google Scholar
  7. 7.
    T. N. Chase and D. L. Murphy, Serotonin and central nervous system function, Annu. Rev. Pharmacol. 13, 181–197 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Kilian and H. H. Frey, Central monoamines and convulsine thresholds in mice and rats. Neuropharmacology 12, 681–692 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    N. K. Mello, Behavioral toxicology: a developing discipline, Fed. Proc. 34, 1832–1834. (1975).PubMedGoogle Scholar
  10. 10.
    F. Islam, Y. Watanabe, H. Morii, and O. Hayaishi, Inhibition of rat brain prostaglandin D synthase by inorganic seleno compounds, Arch. Biochem. Biophys. 289, 161–166 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Matsumura, R. Takahata, and O. Hayaishi, Inhibition of sleep in rats by inorganic selenium compounds, inhibitors of prostaglandin D synthase, Proc. Natl. Acad. Sci. USA 88, 9046–9050 (1991)PubMedCrossRefGoogle Scholar
  12. 12.
    M. J. DeVito and G. C. Wagner, Pargyline and naltrexone fail to antagonize the gustatory avoidance response induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Drug Alcohol Depend. 18, 293–299 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    K. S. Zafar, A. Siddiqui, I. Sayeed, M. Ahmad, S. Salim, and F. Islam, Dose-dependent protective effect of selenium in rat model of Parkinson's disease: neurobehavioral and neurochemical evidences, J. Neurochem. 84, 438–446 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    G. L. Ellman, K. D. Courtney, V. Andres, Jr., and R. M. Feather-Stone, A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95. (1961).PubMedCrossRefGoogle Scholar
  15. 15.
    C. W. Tabor, H. Tabor, and S. M. Rosenthal, Monoamine oxidase, Methods Enzymol. 2, 390 (1953)CrossRefGoogle Scholar
  16. 16.
    G. Moruzzi and H. W. Magoun, Brain Stem reticular formation and activation of the EEG, EEG Clin. Neurophysiol. 1, 455–473 (1994).Google Scholar
  17. 17.
    D. McGinty and R. Szymusiak, The basal forebrain and slow wave sleep: mechanistic and functional aspects, in Slow Wave Sleep: Physiological, Pathophysiological and Functional Aspects, A. Wauquir, C. Dagovic, and M. Radulovacki, eds. Raven Press, New York, pp. 61–73 (1989).Google Scholar
  18. 18.
    M. Steriade and R. W. McCarley, Brainstem Control of Wakefulness and Sleep. Plenum Press, New York (1990).Google Scholar
  19. 19.
    O. Hayaishi, H. Matsumura, H. Onoe, Y. Koyama, and Y. Watanabe, Further studies on sleep wake regulation by prostaglandin D2 and E2. In Sleep, 90, J. Home, ed. Pontenagel Press. Bochum. Germany, p. 405 (1990).Google Scholar
  20. 20.
    O. Hayaishi, Molecular mechanisms of sleep-wake regulation: roles of prostaglandins D2 and E2, FASEB J. 5, 2575–2581 (1991).PubMedGoogle Scholar
  21. 21.
    W. J. H. Nauta, Hypothalamic regulation of sleep in rats. An experimental study, J. Neurophysiol. 9, 285–316 (1946).Google Scholar
  22. 22.
    G. Moruzzi, The sleep waking cycle, Ergeb. Physiol. 64, 1–67 (1972).PubMedGoogle Scholar
  23. 23.
    M. Marcini and G. Marcini The Diencephalons and Sleep. Raven Press, New York (1990).Google Scholar
  24. 24.
    J. A. Boulanto, Thermoregulation, in Fever: Basic Mechanism and Management. P. Mackowiak, ed. Raven Press, New York, pp. 1–22 (1991).Google Scholar
  25. 25.
    H. Matsumura, R. Takahata, and O. Hayaishi, Inhibition of sleep in rats by inorganic selenium compounds, inhibitors of prostaglandin D synthase, Proc. Natl. Acad. Sci. USA 88, 9046–9050 (1991).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Matsumura, Y. Goh, R. Ueno, T. Sakai, and O. Hayaishi, Awaking effect of PGE2 microinjected into the preoptic area of rats, Brain Res. 444, 265–272 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Onoe, R. Ueno, I. Fujita, H. Nishino, Y. Oomura, and O. Hayaishi, Prostaglandin D2, a cerebral sleep-inducing substance in monkeys, Proc. Natl. Acad. Sci. USA 85, 4082–4086 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    F. Islam, S. Zia, I. Sayeed, K. S. Zafar, and A. S. Ahmad, Selenium-induced alteration of lipids, lipid peroxidation, and thiol group in circadian rhythm centers of rat, Biol. Trace Elem. Res. 90, 203–214 (2002).PubMedCrossRefGoogle Scholar
  29. 29.
    J. R. Cooper, F. F. Bloor, and R. H. Roth, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, p. 320 (1978).Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Abdullah Shafique Ahmad
    • 1
  • Suhaila Zia
    • 1
  • Iqbal Sayeed
    • 1
  • Mubeen Ahmad Ansari
    • 1
  • Muzamil Ahmad
    • 1
  • Sofiyan Salim
    • 1
  • Seema Yousuf
    • 1
  • Fakhrul Islam
    • 1
  1. 1.Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia HamdardHamdard UniversityNew DelhiIndia

Personalised recommendations