Advertisement

Activity of glutathione peroxidase, glutathione reductase, and lipid peroxidation in erythrocytes in workers exposed to lead

  • Sławomir Kasperczyk
  • Aleksandra Kasperczyk
  • Alina Ostałwska
  • Maria Dziwisz
  • Ewa Birkner
Original Articles

Abstract

The aim of this study was to estimate the activity of glutathione peroxidase (GPx), glutathione reductase (GR), and malondialdehyde (MDA) in erythrocytes in healthy male employees of zinc and lead steelworks who were occupationally exposed to lead over a long period of time (about 15 yr). Workers were divided into two subgroups: the first included employees with low exposure to lead (LL) (n=75) with blood lead level PbB=25–40 μg/dL and the second with high exposure to lead (HL) (n=62) with PbB over 40 μg/dL. Administration workers (n=35) with normal levels of PbB and zinc protoporphyrin in blood (ZPP) in blood were the control group. The activity of GPx significantly increased in LL when compared to the control group (p<0.001) and decreased when compared to the HL group (p=0.036). There were no significant changes in activity of GR in the study population. MDA erythrocyte concentration significantly increased in the HL group compared to the control (p=0.014) and to the LL group (p=0.024). For the people with low exposure to lead (PbB=25–40 μg/dL), the increase of activity of GPx by about 79% in erythrocytes prevented lipid peroxidation and it appears to be the adaptive mechanism against the toxic effect of lead. People with high exposure to lead (with PbB over 40 μg/dL) have shown an increase in MDA concentration in erythrocytes by about 91%, which seems to have resulted from reduced activity of GPx and the lack of increase in activity of GR in blood red cells.

Index Entries

Lead glutathione peroxidase glutathione reductase malondialdehyde 

References

  1. 1.
    M. E. Ariza, G. N. Bijur, and M. V. Williams, Lead and mercury mutagenesis: role of H2O2, superoxide dismutase, and xanthine oxidase. Environ. Mol. Mutagen 31, 352–361 (1998).PubMedCrossRefGoogle Scholar
  2. 2.
    E. Courtois, M. Marques, A. Barrientos, S. Casado, and A. Lopez-Farre, Lead-induced downregulation of soluble guanylate cyclase in isolated rat aortic segments mediated by reactive oxygen species and cyclooxygenase-2, J. Am. Soc. Nephrol. 14, 1464–1470, (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    J. L. Yang, L. C. Wang, C. Y. Chang, and T. Y. Liu, Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate, Environ. Mol. Mutagen. 33, 194–201 (1999).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Ding, H. C. Gonick, and N. D. Vaziri, Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells, Am. J. Hypertens. 13, 552–555 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    V. N. Adonaylo and P. I. Oteiza, Lead intoxication: antioxidant defenses and oxidative damage in rat brain, Toxicology 135, 77–85 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Gurer, R. Neal, P. Yang, S. Oztezcan, and N. Ercal, Captopril as an antioxidant in lead-exposed Fisher 344 rats, Hum. Exp. Toxicol. 18, 27–32 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    C. D. Upasani and R. Balaraman, Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats, Phytother. Res. 17, 330–334 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Sivaprasad, M. Nagaraj, and P. Varalakshmi, Combined efficacies of lipoic acid and meso-2,3-dimercaptosuccinic acid on lead-induced erythrocyte membrane lipid peroxidation and antioxidant status in rats, Hum. Exp. Toxicol. 22, 183–192 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Sandhir and K. D. Gill, Effect of lead on lipid peroxidation in liver of rats, Biol. Trace Element Res. 48, 91–97 (1995).Google Scholar
  10. 10.
    Y. Ito, Y. Niiya, H. Kurita, S. Shima, and S. Sarai, Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead. Int. Arch. Occup. Environ. Health 56, 119–127 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    C. D. Upasani, A. Khera, and R. Balaraman, Effect of lead with vitamin E, C, or Spirulina on malondialdehyde, conjugated dienes and hydroperoxides in rats, Indian J. Exp. Biol. 39, 70–74 (2001).PubMedGoogle Scholar
  12. 12.
    N. Aykin-Burns, A. Laegeler, G. Kellogg, and N. Ercal, Oxidative effects of lead in young and adult Fisher 344 rats, Arch. Environ. Contam. Toxicol. 44, 417–420 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Neal, K. Cooper, G. Kellogg, H. Gurer, and N. Ercal, Effects of some sulfur-containing antioxidants on lead-exposed lenses, Free Radical Biol. Med. 26, 239–243 (1999).CrossRefGoogle Scholar
  14. 14.
    H. Gurer-Orhan, H. U. Sabir, and H. Ozgunes, Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers, Toxicology 195, 147–154 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Ding, H. C. Gonick, N. D. Vaziri, K. Liang, and L. Wei, Lead-induced hypertension. III. Increased hydroxyl radical production, Am. J. Hypertens. 14, 169–173 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    N. D. Vaziri, Y. Ding, and Z. Ni, Nitric oxide synthase expression in the course of lead-induced hypertension, Hypertension 34, 558–562 (1999).PubMedGoogle Scholar
  17. 17.
    N. Dursun, P. Dogan, and H. Donmez, Plasma and erythrocyte lipid peroxide levels in workers with occupational exposure to lead, Biol. Trace Element Res. 82, 29–34 (2001).CrossRefGoogle Scholar
  18. 18.
    M. C. Dominguez, E. Sole, C. Goni, and A. Ballabriga, Effect of aluminum and lead salts on lipid peroxidation and cell survival in human skin fibroblasts, Biol. Trace Element Res. 47, 57–67 (1995).Google Scholar
  19. 19.
    S. J. Yiin and T. H. Lin, Lead-catalyzed peroxidation of essential unsaturated fatty acid, Biol. Trace Element Res. 50, 167–172 (1995).Google Scholar
  20. 20.
    R. Sandhir, D. Julka, and K. D. Gill, Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes, Pharmacol. Toxicol. 74, 66–71 (1994).PubMedGoogle Scholar
  21. 21.
    X. B. Ye, H. Fu, J. L. Zhu, et al., A study on oxidative stress in lead-exposed workers, J. Toxicol. Environ. Health A 57, 161–172 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    A. A. Hunaiti and M. Soud, Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood, Sci. Total Environ. 248, 45–50 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    N. A. Lachant, A. Tomoda, and K. R. Tanaka, Inhibition of the pentose phsophate shunt by lead: a potential mechanism for hemolysis in lead poisoning, Blood 63, 518–524 (1984).PubMedGoogle Scholar
  24. 24.
    H. Gurer, H. Ozgune, R. Neal, D. R. Spitz, and N. Ercal, Antioxidant effects of N-acetyl-cysteine and succimer in red blood cells from lead-exposed rats, Toxicology 128, 181–189 (1998).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Grabecki, T. Haduch, and H. Urbanowicz, Die einfachen Bestimmungsmethoden der delta-Aminolavulinsaure im Harn [Simple determination methods of delta-aminole-vulinic acid in urine], Int. Arch. Arbeitsmed. 23, 226–240 (1967).PubMedGoogle Scholar
  26. 26.
    D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–169 (1967).PubMedGoogle Scholar
  27. 27.
    R. Richterich, Chemia Kliniczna [Clinical Chemistry], Wydawnictwo Lekarskie PZWL [Medical Publishing PZWL], Warsaw (1971).Google Scholar
  28. 28.
    H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95, 351–358 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    E. Tatrai, Z. Kovacikova, A. Hudak, Z. Adamis, and G. Ungvary, Comparative in vitro toxicity of cadmium and lead on redox cycling in type II pneumocytes, J. Appl. Toxicol. 21, 479–483 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    J. M. Hsu, Lead toxicity as related to glutathione metabolism, J. Nutr. 111, 26–33 (1981).PubMedGoogle Scholar
  31. 31.
    M. A. El-Missiry, Prophylactic effect of melatonin on lead-induced inhibition of heme biosynthesis and deterioration of antioxidant systems in male rats, J. Biochem. Mol. Toxicol. 14, 57–62 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    J. K. Howard, Interrelationships of glutathione reductase, 5-aminolevulinic acid dehydratase, and free sulfhydryl groups in the erythrocytes of normal and lead-exposed persons, J. Toxicol. Environ. Health. 4, 51–57 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    T. D. Oberley, A. L. Friedman, R. Moser, and F. L. Siegel, Effects of lead administration on developing rat kidney. II. Functional, morphologic, and immunohistochemical studies. Toxicol. Appl. Pharmacol. 131, 94–107 (1995).PubMedCrossRefGoogle Scholar
  34. 34.
    E. Sugawara, K. Nakamura, T. Miyake, A. Fukumura, and Y. Seki, Lipid peroxidation and concentration of glutathione in erythrocytes from workers exposed to lead, Br. J. Ind. Med. 48, 239–242 (1991).PubMedGoogle Scholar
  35. 35.
    H. P. Monteiro, D. S. Abdalla, A. S. Arcuri, and E. J. Bechara, Oxygen toxicity related to exposure to lead, Clin. Chem. 31, 1673–1676 (1985).PubMedGoogle Scholar
  36. 36.
    B. M. Solliway, A. Schaffer, H. Pratt, and S. Yannai, Effects of exposure to lead on selected biochemical and haematological variables, Pharmacol. Toxicol. 78, 18–22 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    W. Wasowicz, J. Gromadzi'nska, and K. Rydzy'nski, Blood concentration of essential trace elements and heavy metals in workers exposed to lead and cadmium, Int. J. Occup. Med. Environ. Health 14, 223–229 (2001).PubMedGoogle Scholar
  38. 38.
    S. Kasperczyk, A. Kasperczyk, E. Birkner, A. Ostałowska, and M. Dziwisz, Aktywność transferazy-S-glutationowej w erytrocytach u osób zawodowo narażonych na związki ołowiu. [Activity of glutathione S-transferase (GST) in erythrocytes in workers exposed to lead], Brom. Chem. Toksykol. 35, 173–178 (2002).Google Scholar
  39. 39.
    L. Dock, Induction of rat liver glutathione transferase isoenzyme 7-7 by lead nitrate, Biol. Trace Element Res. 21, 283–288 (1989).CrossRefGoogle Scholar
  40. 40.
    T. Suzuki, S. Morimura, M. B. Diccianni, et al., Activation of glutathione transferase P gene by lead requires glutathione transferase P enhancer I, J. Biol. Chem. 271, 1626–1632 (1996).PubMedCrossRefGoogle Scholar
  41. 41.
    P. D. Whanger, Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis, J. Trace Elements Electrolytes Health Dis. 6, 209–221 (1992).Google Scholar
  42. 42.
    A. I. Othman and M. A. El-Missiry, Role of selenium against lead toxicity in male rats, J. Biochem. Mol. Toxicol. 12, 345–349 (1998).PubMedCrossRefGoogle Scholar
  43. 43.
    J. Onuki, M. H. Medeiros, E. J. Bechara, and P. Di-Mascio, 5-Aminolevulinic acid induces single-strand breaks in plasmid pBR322 DNA in the presence of Fe2+ ions, Biochim. Biophys. Acta 1225, 259–263 (1994).PubMedGoogle Scholar
  44. 44.
    R. Neal, P. Yang, J. Fiechtl, D. Yildiz, H. Gurer, and N. Ercal, Pro-oxidant effects of delta-aminolevulinic acid (delta-ALA) on Chinese hamster ovary (CHO) cells, Toxicol. Lett. 91, 169–178 (1997).PubMedCrossRefGoogle Scholar
  45. 45.
    E. J. Bechara, Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid, Braz. J. Med. Biol. Res. 29, 841–851 (1996).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Sławomir Kasperczyk
    • 1
  • Aleksandra Kasperczyk
    • 1
  • Alina Ostałwska
    • 1
  • Maria Dziwisz
    • 2
  • Ewa Birkner
    • 1
  1. 1.Department of BiochemistrySilesian Medical University in KatowiceZabrzePoland
  2. 2.Eko-Prof.-Med. Miasteczko ŚląskieMiasteczko ŚląskiePoland

Personalised recommendations